基于8051单片机控制带自锁太阳能发电自动跟随系统
2022-06-13 22:41:42 2.14MB 基于 8051 单片机控制 带自
1
#资源达人分享计划#
2022-06-01 05:38:35 1.99MB 机器人 机器学习 深度学习 参考文献
概述:声源自动跟随小车,方案主要是通过采集实时环境声音,计算声音的到达方向,同步小车的角度和声源方向角度并行进,达到声源跟随的目的。主要可以应用在电子宠物上,与人进行互动,也可以判断声源方向用来指示目标,是一个比较有趣的设计。 开发环境硬件:ART-Pi开发板,Raspberry Pi开发板 扩展板:四通道麦克风扩展板,GY-521 MPU-6050模块,直流电机驱动模块,锂电池电源组件 RT-Thread版本:RT-Thread Nano 开发工具及版本:STM32CubeMX 5.6.1 MDK 5.20 RT-Thread使用情况概述采用STM32CubeMX生成RT-Thread Nano的代码工程 内核部分:调度器。 调度器:创建2个线程分别实现MPU-6050的DMP角度数据读取和小车平台姿态与声源达到方向角的同步。 硬件框架ART-Pi定时读取MPU-6050的小车平台姿态数据,然后通过对比串口中断接收的Raspberry Pi声源到达方向角数据,PWM驱动直流电机芯片同步小车姿态并前进,实现声源跟随功能。 软件框架说明本项目软件分为两部分: 第一部分:Raspberry Pi 软件 通过ReSpeaker 4-Mics Pi HAT扩展板采集实时现场环境音频数据,估算声源的到达方向并通过USB TTL串口发送声源到达方向角数据到ART-Pi串口接收端。 第二部分:ART-Pi 软件 ART-Pi开发板上电之后首先完成板级外设的初始化,并初始化MPU-6050的数字运动处理器DMP实现小车姿态的获取。开启串口中断接收Raspberry Pi发送的声源到达方向角数据,输出PWM控制小车的直流电机来改变小车姿态符合声源到达方向角,再控制小车前进。 软件模块说明Raspberry Pi 软件: 安装ReSpeaker 4-Mics Pi HAT的驱动,安装声源到达方向应用mic_array,修改vad_doa.py使其能够通过USB TTL串口输出声源到达方向角数据。 ART-Pi 软件: 创建了2个线程 thread1_entry:周期性的读取MPU-6050的数字运动处理器DMP数值,并把读取到的值放入全局变量中; thread2_entry:循环检查串口数据接收变量,如有声源到达方向角数据就控制小车姿态符合声源到达方向角。 演示效果视频观看: 代码地址(附件为代码地址,下载后打开可见)比赛感悟RT-Thread Nano集成在STM32 Cubemx工具中,直接图形化配置生成初始代码真的非常方便。 由衷的感谢开源社区大佬们的贡献。 最后感谢主办方提供了这么好的一个平台,能学到很多知识。
2022-04-01 23:26:56 8.31MB 开源 rt-thread 电路设计方案 电路方案
1
以蓝牙模块CC2541作为控制核心,利用相关的传感器技术,设计了一款基于BLE4.0的智能书包。主机蓝牙模块与从机蓝牙模块构建一个蓝牙无线传输网络。主机可以获取从机的接收信号强度指示数值,通过主机内的单片机处理数据。数据处理完成后,将指令写入从机中,从机根据指令实现智能书包的自动跟随。通过测试,该智能书包可以实现自动跟随、主机与从机超出安全距离自动报警、超重报警等功能。该系统弥补了现有书包的缺陷,具有重要的推广及应用价值。
1
项目简介: 自动跟随小车系统由两部分组成:跟随小车和移动目标携带装置。 工作原理: 跟随小车系统通过无线通信模块发送寻找信号,同时超声波接收器开始计时,如果移动目标接收到无线寻找信号,则立即发送超声波信号。这样小车的三角超声波接收器陆续收到超声波信号,CPU通过每个超声波模块接收到的时间,计算出移动目标到3个超声波接收点的距离,通过三边定位算法即可确定移动目标的位置。如果计算出来的距离大于设定距离,则控制电机向目标方向移动,如果计算出来的距离小于设定距离,则控制电机停止,从而实现小车的自动跟随功能。 硬件说明: 小车硬件设计: 自动跟随小车硬件模块包括控制器模块、无线收发模块、超声波接收模块、电机及电机驱动模块、报警模块、电源模块组成,下面对每个模块做具体介绍。 由于跟随小车需要进行实时目标位置定位计算、无线信号收发处理、电机管理、电源管理等任务 ,采用普通单片机其资源及速度难以满足使用要求,需要高性能DSP处理器才能够完成,因此选择STM32F103RCT6作为控制器。 无线收发是用来实现同步,当小车发射无线信号,同时人手携带装置接收到无线信号时,人手携带装置发射超声波。所以本次设计选用NRF2401做为无线收发模块。 NRF2401各引脚功能为: (1)CSN:芯片的片选线,CSN为低电平工作。 (2)SCK:芯片控制的时钟线(SPI时钟)。 (3)MISO:芯片控制数据线 。 (4)IRQ:中断信号,无线通信过程中MCU主要是通过IRQ与NRF2401通信。 (5)CE:芯片的模式控制线。 (6)MOSI:芯片控制数据线。 超声波接收模块是采用具有单独接收功能的模块,如图所示。其中接收模块核心部分是由专用超声波接收集成电路TL852构成的超声波信号检测电路,这部分主要完成的是回波的检测和放大。 直流电机的控制很简单,性能出众,直流电源也容易实现。这种直流电机的驱动及控制需要电机驱动模块进行驱动,采用L298N电源模块。 系统电源采用7.4V可充电锂电池。7.4V锂电池组属于多串并锂电池组。 目标携带装置硬件设计: 由于跟随小车需要进行实时目标位置定位计算、无线信号收发处理、电机管理、电源管理等任务 ,采用普通单片机其资源及速度难以满足使用要求,需要高性能DSP处理器才能够完成,因此选择STM32F103RCT6作为控制器。 无线收发是用来实现同步,当小车发射无线信号,同时人手携带装置接收到无线信号时,人手携带装置发射超声波。所以本次设计选用NRF2401做为无线收发模块。 超声波发射模块是采用具有单独发射功能的模块,如图所示。其中发射模块中的P1 、R4、R5。因为利用了变压器和发射头的谐振,好处是能得到近似正弦波。但附带的问题是:在驱动信号停止后,由于谐振的原因,发射头还会持续较长时间发射,直至能量在变压器的次级线包直流电阻上消耗完,这样就导致在近距离测量时,回波都到了,余波还未结束,导致测量失败。所以设计了一个余波抑制电路,将变压器初级构成回路,利用初级较小的电阻快速消耗掉次级的能量。为此,要多占一个MCU的I/O口。而且,由于驱动电压的原因,必须使用OC(或者开漏)驱动,否则会无法可靠关断P1,导致正常发射不正常。如果测量的距离较远,或者觉得余波不影响测量,则不必接这个信号。如若使用,一定要注意和发射驱动信号的配合,不要两个同时有效,导致发射效率大减。从原理图上看,如果要提高驱动能量,可以适当提高驱动电压,但要要注意MOS管的耐压只有20V,发射头的最高电压是80V。 目标携带装置电路连接图: 小车硬件电路连接图: 软件说明见附件! 小车整机展示: 目标携带装置展示: 整机测试图: 【转载自电子发烧友】
1
一种基于神经网络的自动跟随行李箱设计.pdf
2021-09-25 17:05:57 1.12MB 神经网络 深度学习 机器学习 数据建模
行业分类-电信-基于无线电信号强度的轮椅自动跟随方法及系统.rar
AOA模块,高精度检测距离和角度,是实现高精度定位系统和自动跟随非常好的传感器。 包括模块参考文档,接口资料,滤波算法,参考代码,检测工具等。 系统非常简单,如下: AOA 跟随系统:AOA 模块和 AOA 跟随标签组成 AOA 基站模块:通过接收标签发出的信号测距和计算角度 AOA 标签:发射信号给基站
2021-08-08 15:56:12 27.31MB 传感器
1
基于单片机自动跟随小车的设计与制作.pdf
2021-07-13 09:05:37 341KB 单片机 硬件开发 硬件程序 参考文献
本项目是对传统只有推拉功能的旅行箱存在的不方便以及安全问题进行改善,自跟随旅行箱可实现自动跟随、短距离报警、指纹开锁,实时测重等基本功能,极大程度方便了人们的使用,为人们解决了旅途中关于旅行箱的烦恼。随着嵌入式控制技术和电子信息技术的发展,自动控制的机器已经渗透到了生活中的各个方面。近年来已经出现了具有定位功能的智能旅行箱,这种旅行箱结合相对应的软件可以提供基于位置服务的防盗、丢失寻找等功能,但这种智能旅行箱功能较为单一。