使用getdata.py下载数据,或者使用自己的数据源,将数据放在stock_daily目录下 使用data_preprocess.py预处理数据,生成pkl文件,放在pkl_handle目录下(可选) 调整train.py和init.py中的参数,先使用predict..py训练模型,生成模型文件,再使用predict.py进行预测,生成预测结果或测试比照图 本项目使用机器学习方法解决了股票市场预测的问题。项目采用开源股票数据中心的上证000001号,中国平安股票(编号SZ_000001),使用更加适合进行长时间序列预测的LSTM(长短期记忆神经网络)进行训练,通过对训练集序列的训练,在测试集上预测开盘价,最终得到准确率为96%的LSTM股票预测模型,较为精准地实现解决了股票市场预测的问题
2024-06-07 15:00:05 4.9MB 神经网络 lstm 数据集
1
基于LSTM(Long Short-Term Memory)模型的股票预测模型是一个应用深度学习技术来分析和预测股票市场走势的工具。该模型特别适用于处理和预测时间序列数据,能够学习股票价格随时间变化的复杂模式。 此Python资源包含一个完整的LSTM模型实现,适用于金融分析师和机器学习爱好者。它提供了从数据预处理、模型设计、训练到预测的全流程代码。用户可以利用这个模型来提高对股票市场动态的理解,以及对潜在投资机会的把握。 资源中还包含了用于训练模型的示例数据集,以及一个详细的使用教程,指导用户如何配置和运行模型,如何调整超参数以优化预测性能。此外,文档还涉及了模型评估的常用指标,帮助用户了解模型的预测准确性。 使用此模型时,用户应意识到股市存在不确定性,模型预测不能保证投资成功。此外,用户应遵守相关法律法规,合理使用该工具,并尊重数据来源的版权和使用条款。这个资源是金融科技领域探索者和实践者提升技能、深入了解机器学习在金融领域应用的宝贵资料。
2024-05-25 13:26:14 965KB python 深度学习 lstm 数据集
1
python数据分析,因为股票价格的影响因素太多,通过k线数据预测未来的价格变化基本不可行,只有当天之内的数据还有一定的关联,故feature与target都选择的是当天的数据。 加载数据 为了加快数据的处理速度,提前将mariadb数据库中的数据查询出来,保存成feather格式的数据,以提高加载数据的速度。 经过处理,不同股票的数据保存在了不同的文件中,列名还保持着数据库中的字段名。我选择了股票代码为sh600010的这只股票作为数据分析的数据来源。预测出来的结果与真实值变化趋势相近,说明线性回归模型在一定程度上能够解释收盘价与选取的feature之间的关系
2024-04-10 10:35:59 342KB python 机器学习 数据集 股票预测
1
使用LSTM-ARIMA模型进行混合预测,ARIMA做线性部分的预测,LSTM做非线性部分
2024-02-20 11:24:47 5KB LSTM LSTM预测 arima 非线性模型
1
matlab实现股票预测代码gui,包含的功能有导入股票数据、股票指标分析、预测上涨概率
2023-04-20 23:35:23 3.39MB matlab 金融商贸 软件/插件
1
import numpy import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.tsa.arima_model import ARIMA from statsmodels.graphics.tsaplots import plot_acf from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.seasonal import seasonal_decompose sp500_2013_2018 = pd.read_csv('sp500_data/SP500.csv') print(sp500_2013_2018.head())
2023-02-18 21:44:49 758KB LSTM
1
毕业设计之:基于 Python 的股票价格序列相似性分析 完整代码+数据集 摘要:本文主要能够根据用户所提供的股票寻找同行业内与其价格序列相似的股票,并能通过其在历史中的重复性对今后的趋势做预测。使用 Python 及相关库,结合动态时间弯曲(DTW)算法,用折线图的方式形象直观地展现出分析结果。 关键字:Python;股票价格序列;相似性;时间动态弯曲法;DTW
2023-01-28 15:51:08 1.67MB 股票预测 python 相似性
1
使用BP神经网络和LSTM预测股票价格(注释拉满)+数据集.zip 代码详细注释、带有数据集 Jupyter Notebook 使用BP神经网络和LSTM预测股票价格(注释拉满)+数据集.zip 代码详细注释、带有数据集 Jupyter Notebook 使用BP神经网络和LSTM预测股票价格(注释拉满)+数据集.zip 代码详细注释、带有数据集 Jupyter Notebook
2022-12-24 20:26:50 2.51MB JupyterNoteboo 股票预测 LSTM BP神经网络
matlab预测股票价格走势 基于数字数据的股市预测研究使用股市中某一时间尺度上的数字数据,例如天空指数价格和股价成交量数据,来预测同一尺度上的特定股票或股市中的其他投资。预测标的的未来价格。根据研究的重点,这些研究可以分为数值数据股票市场预测特征研究和数值数据股票预测模型研究。为了构建我们的模型,除了传统的ARIMA模型之外,本文还将使用LSTM模型。本文中的模型使用70%的数据进行训练,其余30%的数据用于测试。对于训练,我们使用均方根误差和Adam算法来优化模型。本文将使用Stata12计算ARIMA和GARCH模型,并使用Matlab进行训练。
2022-11-26 19:26:32 1.14MB matlab 股票预测
1
一种基于Python和BP神经网络的股票预测方法
2022-11-17 18:18:10 2.06MB BP神经网络 Python股票预测
1