将离散空间问题求解的蚁群算法引入连续空间, 针对多目标优化问题的特点, 提出一种用于求解带有约束
条件的多目标函数优化问题的蚁群算法. 该方法定义了连续空间中信息量的留存方式和蚂蚁的行走策略, 并将信息
素交流和基于全局最优经验指导两种寻优方式相结合, 用以加速算法收敛和维持群体的多样性. 通过3 组基准函数
来测试算法性能, 并与N SGA II 算法进行了仿真比较. 实验表明该方法搜索效率高, 向真实Pareto 前沿逼近的效果
好, 获得的解的散布范围广, 是一种求解多目标优化问题的有效方法.

1
粒子群算法 约束多目标 优化 matlab代码 粒子群算法 约束多目标 优化 matlab代码 粒子群算法 约束多目标 优化 matlab代码 粒子群算法 约束多目标 优化 matlab代码
1
:为了保持所求得的约束多目标优化问题Pareto最优解的适应度与多样性,在NSGA-II基础上提出了一种 用于求解有约束的多目标优化问题的热力学遗传算法。结合热力学中自由能与熵的概念,利用热力学中熵与能 量的竞争来保持种群的适应度与多样性的平衡,设计了热力学算子。根据非支配排序Pareto分层结构建立分层 小生境来改进选择算子,弥补了选择算子不足。实验结果表明:该算法不仅得到的解在空间分布均匀,收敛性 好,同时解集具有较广的分布空间。
1
安全技术-网络信息-约束多目标优化的协同式神经网络算法及应用研究.pdf
2022-05-02 11:00:40 1.65MB 神经网络 文档资料 安全 网络
针对约束多目标区间优化问题, 提出一种交互多属性决策NSGA-II 算法. 该算法将非线性问题线性化, 定义P占优支配关系求出个体的序值, 定义区间拥挤距离来区分具有相同序值个体的优劣, 采用约束精英策略删除种群中不满足约束的个体. 将选出的个体作为方案集, 目标函数作为属性集, 决策者对于各目标函数的偏好作为属性权重, 构建一个多属性决策模型, 在进化过程中融入该模型来选取符合决策者偏好的满意解. 仿真实验验证了所提出方法的可行性和正确性.
1
借助生物免疫系统的机理和约束控制的概念,本文提出一种求解动态多目标多模态约束优化的免疫优化方法。这种方法主要由环境检测、群体初始化和免疫进化三个模块构成。第一个模块是受到免疫监视的机理的启发而获得,其用于检测环境是否发生变化和确定环境的类型;第二个模块依据检测结果产生初始群体;第三个模块沿着不同方向进化两个子群。实验结果表明该方法能有效发现各环境的全局Pareto面。
1
约束多目标优化问题中约束处理方法综述,遗传算法(Genetic Algorithm,GA)是模仿自然界生物进化机制发展起来的全局搜索优化方法,它在迭代过程中使用适者生存的原则,采用交叉、变异等操作使得种群朝着最优的方向进化,最终获得最优解。
2021-11-28 10:04:39 348KB 多目标优化 约束
1
为提高约束多目标进化算法的收敛性和解集分布性,提出一种基于人工蜂群算法的改进约束多目标进化算法CMABC。在利用外部种群分别存储较优可行解和不可行解处理约束条件的基础上,根据约束多目标问题的特点,对外部种群的更新方式、迭代种群的更新方式及人工蜂群算法进行改进。实验仿真结果表明,CMABC相对于目前性能较好的MOABC及HPSO具有一定优势,能够在保证良好收敛性的同时,使获得的Pareto最优解集具有更均匀的分布性和更广的覆盖范围,适合于约束多目标优化问题的求解。
1
粒子群算法求解约束多目标优化万能matlab代码
2021-11-11 16:08:35 7KB 粒子群算法
粒子群算法 约束多目标 优化 matlab代码 粒子群算法 约束多目标 优化 matlab代码 粒子群算法 约束多目标 优化 matlab代码 粒子群算法 约束多目标 优化 matlab代码
1