STM32内部Flash的写寿命大约是1万次,假如我们在其Flash中存储数据,每天100次写操作,100天后Flash就无法继续可靠使用了;外部FLASH,比如说W25Q32,擦写次数也只有十万次,在高频率读写下也支撑不了多久, 本文采取了一种非常简单的方法,将Flash的使用寿命无限延长,取决于你为它分配的存储区大小。 主要思想就是将FLASH 分配一块区域给我们的管理机,然后用索引的方式累积写FLASH,中途不进行擦写,在存满整个分区时进行统一擦写,读取根据ID进行读取,并且加上了数据校验,异常回调。主要用于存储系统配置,运行记录等。支持多个存储管理机管理不同的区域.
2024-10-06 17:08:08 4KB stm32 数据结构
1
leetcode中文版 2020复旦大学软件/计算机保研机考:算法与数据结构总复习OxO Contributions 欢迎各位同学随意clone/fork,大家一起为了保研机考冲刺吧⁄(⁄ ⁄ ⁄ω⁄ ⁄ ⁄)⁄ 如果有好的题目资源欢迎提issue哦_(:з」∠)_ 同时欢迎前辈学长/学姐提供往年的考题/参考资料(/ω\) 如果觉得不错就点个star叭(星星眼.jpg 经典考题(Python版答案详见exams文件夹下哦OvO) 第一部分(0.1-0.10) 连续最长子序列和 最短路径问题 逆波兰式判断表达式合法与求值 找出图中从节点s到t总权重小于等于k的情况 斐波那契型数字判别问题 数组逆序对计数 快速幂的板子题,输入a,b,c,输出pow(a,b)%c的值 组合数的经验题,输入一个n,输出组合数集合C(0,n) ,C(1,n) ,..., C(n,n)~ 中共有多少奇数。(第k个组合数与n异或后仍为k的个数) 奶牛吃草的问题(图的着色板子题(二分图),输出着色方案中字典序最小的那个)——鲍威尔算法/贪心算法 编辑距离 第二部分(1.1-1.10) 商店中有若干商品,它们也会打包在
2024-08-13 17:21:19 191KB 系统开源
1
机器学习基础:数学理论+算法模型+数据处理+应用实践 机器学习,作为人工智能领域的重要分支,正在逐渐改变我们生活和工作的方式。要想深入理解和有效应用机器学习技术,必须扎实掌握其基础知识。这其中,数学理论、算法模型、数据处理和应用实践是四大不可或缺的要素。 数学理论是机器学习的基石。统计概率、线性代数、微积分和优化理论等数学知识,为机器学习提供了严密的逻辑基础和数学工具。掌握这些理论知识,可以帮助我们更好地理解机器学习算法的原理和运行机制,从而更有效地应用它们解决实际问题。 算法模型是机器学习的核心。分类算法、聚类算法、回归算法和降维算法等,都是机器学习中常用的算法模型。精通这些算法的原理和应用场景,可以帮助我们根据具体问题的特点选择合适的算法,从而构建出高效、准确的机器学习模型。 数据处理是机器学习的重要环节。在机器学习项目中,数据的质量和预处理方式往往对模型的性能产生重要影响。因此,我们需要掌握特征提取、数据清洗、数据变换和特征选择等数据处理技术,以提高数据的质量和模型的性能。 应用实践是检验机器学习基础知识和技能的试金石。通过参与实际项目,我们可以将理论知识与实际应用相结 ### 机器学习基础知识点详解 #### 一、数学理论 **1.1 统计概率** - **定义**: 统计概率是研究随机事件发生可能性的一门学科。 - **重要性**: 在机器学习中,统计概率帮助我们理解数据分布、模型参数的概率意义,以及如何从样本数据中估计这些参数。 - **应用**: 最大似然估计、贝叶斯估计等。 **1.2 线性代数** - **定义**: 研究向量空间和线性映射的数学分支。 - **重要性**: 用于表示和操作多维数据结构,如矩阵运算、特征值和特征向量等。 - **应用**: 数据集的表示、线性变换、特征分解等。 **1.3 微积分** - **定义**: 研究连续变化的数学分支,包括微分和积分两大部分。 - **重要性**: 微积分是优化算法的基础,帮助我们找到函数的最大值或最小值。 - **应用**: 梯度下降算法、最优化问题求解等。 **1.4 优化理论** - **定义**: 研究如何寻找函数的极值。 - **重要性**: 在机器学习中,优化理论用于调整模型参数,以最小化误差函数或最大化目标函数。 - **应用**: 梯度下降、牛顿法、拟牛顿法等。 #### 二、算法模型 **2.1 分类算法** - **定义**: 将输入数据分配到特定类别的算法。 - **例子**: 逻辑回归、决策树、支持向量机等。 - **评估**: 精确率、召回率、F1分数等指标。 **2.2 聚类算法** - **定义**: 将相似的数据对象分组在一起的方法。 - **例子**: K-Means、层次聚类、DBSCAN等。 - **评估**: 轮廓系数、Calinski-Harabasz指数等。 **2.3 回归算法** - **定义**: 预测连续值输出的算法。 - **例子**: 线性回归、岭回归、Lasso回归等。 - **评估**: 均方误差、R²分数等。 **2.4 降维算法** - **定义**: 减少数据特征数量的技术。 - **例子**: 主成分分析(PCA)、线性判别分析(LDA)等。 - **评估**: 重构误差、解释方差比等。 #### 三、数据处理 **3.1 特征提取** - **定义**: 从原始数据中提取有意义的信息。 - **例子**: 文本中的词频-逆文档频率(TF-IDF)、图像中的边缘检测等。 - **重要性**: 提高模型的预测性能。 **3.2 数据清洗** - **定义**: 清除数据中的噪声、不一致性和缺失值。 - **例子**: 使用均值、中位数填充缺失值,异常值检测等。 - **重要性**: 确保数据质量,减少模型训练时的偏差。 **3.3 数据变换** - **定义**: 转换数据格式,使其符合算法要求。 - **例子**: 归一化、标准化等。 - **重要性**: 加速模型收敛,提高预测准确性。 **3.4 特征选择** - **定义**: 从大量特征中挑选出对目标变量贡献最大的特征子集。 - **例子**: 递归特征消除(RFE)、基于模型的选择等。 - **重要性**: 减少模型复杂度,防止过拟合。 #### 四、应用实践 **4.1 实际项目** - **定义**: 将理论知识应用于解决实际问题的过程。 - **例子**: 推荐系统、图像识别、自然语言处理等。 - **重要性**: 验证理论的有效性,积累实践经验。 **4.2 模型评估** - **定义**: 测量模型性能的过程。 - **例子**: 交叉验证、混淆矩阵、ROC曲线等。 - **重要性**: 选择最佳模型,改进模型性能。 **4.3 过拟合与欠拟合** - **定义**: 模型过于复杂或简单导致的问题。 - **解决方案**: 正则化、增加数据量、特征选择等。 - **重要性**: 平衡模型复杂度与泛化能力。 **4.4 模型调参** - **定义**: 调整模型参数以获得更好的性能。 - **例子**: 网格搜索、随机搜索等。 - **重要性**: 提升模型效果,实现最佳配置。 通过以上对机器学习基础知识的详细介绍,我们可以看出,机器学习不仅仅是一系列算法的应用,更是建立在深厚数学理论基础上的科学。掌握这些理论知识和技术,能够让我们更加深刻地理解机器学习的工作原理,并在实践中取得更好的成果。
2024-08-10 19:39:52 8.96MB 机器学习 聚类
1
《船说:算法与数据结构》是B站上由胡船长主讲的一门课程,致力于帮助大学生深入理解和掌握C/C++/JAVA/Python等编程语言中的数据结构知识。这门课程不仅涵盖了基础的数据结构类型,如数组、链表、栈、队列,还深入探讨了树形结构、图论、哈希表以及排序和查找算法等核心主题。通过学习这些内容,学生可以提升编程能力,为解决复杂问题打下坚实基础。 在提供的压缩包文件"胡船长,B 站《船说:算法与数据结构》课程讲义和代码.zip"中,我们可以找到一系列的学习资源,包括讲义和实际的代码示例。这些资料对于初学者和进阶者都非常有价值,因为理论与实践的结合是理解数据结构的关键。 让我们来详细了解一下数据结构这个概念。数据结构是计算机科学中一个重要的基础学科,它研究如何在计算机中组织和存储数据,以便高效地进行访问和修改。数据结构的选择直接影响到程序的效率和设计。常见的数据结构有以下几种: 1. **数组**:最基础的数据结构,它是一个元素类型相同的集合,可以通过索引快速访问任一元素。但是插入和删除操作通常比较低效。 2. **链表**:每个节点包含数据和指向下一个节点的引用,适合频繁的插入和删除操作。根据链表的指向,可分为单向链表和双向链表。 3. **栈**:遵循“后进先出”(LIFO)原则的数据结构,常用于表达式求值、递归调用等场景。 4. **队列**:遵循“先进先出”(FIFO)原则,常用于任务调度、消息传递等场景。 5. **树**:一种非线性的数据结构,每个节点可有零个或多个子节点,如二叉树、平衡树(AVL树、红黑树)等,广泛应用于搜索和排序问题。 6. **图**:由节点(顶点)和边组成,表示对象间的关系,可用于网络路由、社交网络分析等问题。 7. **哈希表**:通过哈希函数将数据映射到固定大小的桶中,实现快速查找、插入和删除,但可能产生冲突问题。 8. **堆**:一种特殊的树形数据结构,满足堆性质(最大堆或最小堆),常用于优先队列和优化算法(如堆排序)。 9. **排序算法**:如冒泡排序、选择排序、插入排序、快速排序、归并排序等,用于对数据进行升序或降序排列。 10. **查找算法**:如线性查找、二分查找、哈希查找等,用于在数据中寻找特定元素。 学习这些数据结构的同时,配合实际的代码示例尤为重要。胡船长的课程讲义和代码将帮助学生深入理解每种数据结构的实现细节和应用场景。通过阅读和运行代码,学生可以亲手实践,增强对数据结构的理解,并能提高编程技能。 《船长的算法与数据结构》课程提供了丰富的学习资源,不仅包括理论知识,还有实践案例。对于想要提升编程能力和算法水平的学子来说,这是一个不可多得的宝藏。利用这些资源,相信你将在数据结构的世界里游刃有余,为未来的技术之路铺就坚实的基石。
2024-08-10 10:12:06 108.48MB 数据结构
1
完整的仿真了地形匹配中的TERCOM算法,包含了地形数据。
2024-05-22 17:29:09 3.43MB 地形数据
算法与数据结构入门的基础算法,必须熟练写出,是一些竞赛常考的模板。打比赛用的所有板子,数据结构与算法中常用的核心算法,大家在拿到之后使用最好加以理解,这样才能真正内化到自己的知识库里,量多且实惠,背住你就无敌了。每一个难理解的算法都有相对应的解析与注释,可以放心食用。
2024-03-26 00:30:33 13KB 数据结构
1
算法与数据结构涵盖了以下主要内容: 数据结构(Data Structures): 逻辑结构:描述数据元素之间的逻辑关系,如线性结构(如数组、链表)、树形结构(如二叉树、堆、B树)、图结构(有向图、无向图等)以及集合和队列等抽象数据类型。 存储结构(物理结构):描述数据在计算机中如何具体存储。例如,数组的连续存储,链表的动态分配节点,树和图的邻接矩阵或邻接表表示等。 基本操作:针对每种数据结构,定义了一系列基本的操作,包括但不限于插入、删除、查找、更新、遍历等,并分析这些操作的时间复杂度和空间复杂度。 算法: 算法设计:研究如何将解决问题的步骤形式化为一系列指令,使得计算机可以执行以求解问题。 算法特性:包括输入、输出、有穷性、确定性和可行性。即一个有效的算法必须能在有限步骤内结束,并且对于给定的输入产生唯一的确定输出。 算法分类:排序算法(如冒泡排序、快速排序、归并排序),查找算法(如顺序查找、二分查找、哈希查找),图论算法(如Dijkstra最短路径算法、Floyd-Warshall算法、Prim最小生成树算法),动态规划,贪心算法,回溯法,分支限界法等。 算法分析:通过数学方法分析算法的时间复杂度(运行时间随数据规模增长的速度)和空间复杂度(所需内存大小)来评估其效率。 学习算法与数据结构不仅有助于理解程序的内部工作原理,更能帮助开发人员编写出高效、稳定和易于维护的软件系统。
2024-03-23 17:48:56 23KB java java数据结构 算法与数据结构
1
1、资源内容:基于Matlab蚁群算法的三维路径规划算法(源码+数据).rar 2、适用人群:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业或毕业设计,作为“参考资料”使用。 3、解压说明:本资源需要电脑端使用WinRAR、7zip等解压工具进行解压,没有解压工具的自行百度下载即可。 4、免责声明:本资源作为“参考资料”而不是“定制需求”,代码只能作为参考,不能完全复制照搬。不一定能够满足所有人的需求,需要有一定的基础能够看懂代码,能够自行调试代码并解决报错,能够自行添加功能修改代码。由于作者大厂工作较忙,不提供答疑服务,如不存在资源缺失问题概不负责,谢谢理解。
2024-03-05 09:37:34 6KB matlab
%% 数据归一化 [p_train, ps_input] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input); [t_train, ps_output] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output); %% 转置以适应模型 p_train = p_train'; p_test = p_test'; t_train = t_train'; t_test = t_test'; %% 创建网络 k = 7; % 保留成分个数 [theta, ch0] = my_pls(p_train, t_train, k); %% 仿真测试 t_sim1 = sim_pls(p_train, theta, ch0); t_sim2 = sim_pls(p_test , theta, ch0); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim
2024-01-19 09:57:36 15KB matlab 数据集
1
算法与数据结构考研试题精析》收集了自1992年以来国内60余所重点高校和科学院、所300多套硕士研究生入学“算法与数据结构”考试试卷的1600多道试题,并给出了参考答案和分析。《算法与数据结构考研试题精析》可以作为高等院校计算机及相关专业学习数据结构课程的参考书,对于报考相关专业硕士研究生的考生也极具参考价值,同时也适用于讲授该课程的教师以及自修该课程的其他人员。
2024-01-06 18:54:14 11.18MB 数据结构
1