1、文件“600519.csv”可以从网址 “http://quotes.money.163.com/service/chddata.html?code=0600519&start=20010827 &end=20221115&fields=TCLOSE;HIGH;LOW;TOPEN;LCLOSE;CHG;PCHG;TURNOVER;VOT URNOVER;VATURNOVER;TCAP;MCAP”下载 2、根据上面的网址,编写程序自动下载中证白酒指数中 17 支股票的数据(即下载 17 个 csv 文件),每支股票的数据应该是从上市起至 2022 年 11 月 29 日。 3、读取所下载的 17 个 csv 文件中有关股票的数据,将数据保存至一个 sqlite3 的数据 库中(sqlite3 的教程及接口示例可参见https://www.runoob.com/sqlite/sqlitetutorial.html)。 4、使用 DTW(Dynamic Time Warping)算法计算贵州茅台(600519)与其它 16 支股票的距离,并将这 16 个距离打印在屏幕上。
2024-12-17 16:14:44 22KB python 数据分析
1
用Python实现BP神经网络
2024-12-12 17:19:38 3KB
1
在“python+统计学+源码+用Python动手学统计学”这个主题中,我们可以深入探讨如何使用Python语言来学习和应用统计学。Python作为一门强大的编程语言,因其易读性强、库支持丰富,成为了数据科学领域的重要工具,自然也是学习统计学的理想选择。以下将详细介绍如何利用Python进行统计学的学习和实践,以及可能涉及的关键知识点。 统计学是研究数据收集、组织、分析、解释和呈现的学科。在Python中,我们可以通过以下几个关键库来实现这些功能: 1. **NumPy**: NumPy是Python的基础库,提供了高级数学运算功能,特别是对多维数组的支持。在统计学中,我们经常使用NumPy进行数据处理、计算基本统计量(如平均值、中位数、标准差)等。 2. **Pandas**: Pandas是Python的数据分析库,提供了DataFrame结构,使得数据操作变得简单直观。它支持数据清洗、合并、切片和切块,以及统计分析等功能。 3. **Matplotlib**: 这是Python最常用的可视化库之一,用于绘制各种统计图表,如直方图、散点图、线图等,帮助我们理解数据分布和关系。 4. **Seaborn**: Seaborn是基于Matplotlib的统计图形库,提供了更高级的图表选项,如热力图、小提琴图、箱形图等,使数据可视化更具吸引力和洞察力。 5. **SciPy**: SciPy是科学计算库,包含大量统计函数,如假设检验、回归分析、随机过程等,进一步扩展了Python在统计学中的应用范围。 6. **Statsmodels**: Statsmodels是专门用于统计建模的库,提供各种统计模型,如线性模型、时间序列分析、非参数方法等,便于进行统计推断和预测。 7. **Scikit-learn**: 虽然主要应用于机器学习,但Scikit-learn也包含了模型选择和评估的统计方法,对于理解和优化模型性能非常有用。 在“pystat-code-2021-01-25”这个压缩包中,很可能是包含了一系列使用Python进行统计学实践的代码示例。这些代码可能涵盖了数据预处理、描述性统计、概率分布、假设检验、回归分析、聚类、分类等各种统计学主题。通过阅读和运行这些代码,你可以更好地理解统计学概念,并提高使用Python解决实际问题的能力。 在学习过程中,你将遇到并需要掌握以下关键概念: - 数据类型与数据结构:理解如何在Python中表示和操作不同类型的数据,如数值、字符串、列表、字典等。 - 数据清洗:学习如何处理缺失值、异常值和重复值。 - 描述性统计:计算和解释均值、中位数、众数、标准差、方差等基本统计量。 - 分布:理解正态分布、二项分布、泊松分布等常见概率分布,以及如何用Python绘制这些分布。 - 假设检验:包括t检验、卡方检验、ANOVA等,用于判断样本间是否有显著差异。 - 回归分析:了解线性回归、逻辑回归等模型,以及如何评估模型的拟合度和预测能力。 - 时间序列分析:学习如何处理和分析时间序列数据,如ARIMA模型。 - 随机过程:探索随机变量的序列行为,如布朗运动、马尔科夫链等。 - 机器学习基础:了解监督学习和无监督学习的基本算法,如K-means聚类、决策树等。 通过结合Python和统计学,你可以构建起强大的数据分析能力。这个压缩包提供的源码实例是宝贵的实践资源,通过深入学习和实践,你将能够更好地运用Python解决统计学问题,提升自己的数据分析技能。
2024-11-30 11:30:16 1.72MB python 源码
1
"pammy:用 Python 为 Django 编写的 IP 地址管理工具" 涉及的关键技术是Python编程语言与Django Web框架的结合应用,以及IP地址的管理和操作。Pammy是一个专门针对Django设计的工具,用于更高效、便捷地处理与IP地址相关的任务。 中的“帕米”即指Pammy,这是一个基于Python开发的库,其主要目标是简化在Django项目中对IP地址进行管理和操作的过程。Python是一种强大的、高级的解释型编程语言,被广泛用于Web开发、数据分析和自动化任务。Django则是一个开源的Web框架,遵循模型-视图-控制器(MVC)设计模式,用于快速构建安全且可维护的Web应用程序。 Pammy的使用可以极大地方便开发者在Django项目中处理IP数据,比如记录、验证、过滤和分析IP地址。在Web服务中,管理IP地址通常是至关重要的,例如限制特定IP的访问权限、记录访问日志或进行地理定位等。 在实际应用中,Pammy可能提供了以下功能: 1. IP地址验证:确保输入的IP地址格式正确,支持IPv4和IPv6。 2. IP地址转换:在IPv4和IPv6之间进行转换。 3. IP地址范围操作:允许定义IP地址范围,并进行包含、排除等操作。 4. IP地址与地理位置关联:集成第三方API,获取IP地址对应的地理位置信息。 5. 黑名单/白名单管理:方便地添加、移除和管理禁止或允许访问的IP列表。 6. 日志记录:记录IP访问信息,便于分析和审计。 "CSS"可能是指Pammy在提供IP管理功能的同时,也关注用户体验,可能包含了一些与前端界面设计相关的CSS(层叠样式表)代码。CSS用于美化Web页面的布局和样式,使得Pammy的用户界面更加直观和友好。 在使用Pammy时,开发者需要熟悉Python和Django的基本概念,了解如何在Django项目中安装和配置第三方库。此外,理解IP地址的结构和网络协议的基本原理也是必不可少的。Pammy-master可能是一个源码仓库,包含了Pammy的完整源代码,开发者可以通过阅读和学习这些代码来深入了解其内部实现机制,以便于定制和扩展。 Pammy是Python和Django生态中一个实用的工具,它专注于解决IP地址管理问题,提升Web开发效率,同时也关注用户体验,通过CSS来优化界面设计。对于任何涉及IP地址处理的Django项目,Pammy都是一个值得考虑的解决方案。
2024-10-23 11:42:42 238KB
1
python烟花代码 用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip用python代码放烟花源码python.zip
2024-08-29 14:08:47 15.46MB python
1
在Python编程环境中,科学计算是数据科学家和工程师的常用工具,尤其在解决复杂的数学问题时,如偏微分方程(PDEs)的求解。偏微分方程广泛应用于物理、工程、金融等领域,描述了各种系统的时间和空间变化规律。本主题将深入探讨如何利用Python来解决偏微分方程,特别是采用高斯迭代法解决拉普拉斯方程。 我们需要了解Python中的科学计算库,如NumPy和SciPy。NumPy是Python的基础库,提供了大量的数学函数和高效的多维数组对象。SciPy则在NumPy的基础上,提供了更多的科学计算功能,包括优化、插值、线性代数和积分等。 拉普拉斯方程是一类重要的偏微分方程,通常表示为∇²u = 0,其中u是未知函数,∇²是拉普拉斯算子。它是无源扩散问题的标准模型,在静电学、流体力学和热传导等领域有广泛应用。在二维或三维空间中,拉普拉斯方程的解通常具有无旋性和无源特性。 解决拉普拉斯方程的一种经典数值方法是有限差分法。通过离散化空间和时间,将偏微分方程转化为代数方程组。高斯迭代法是一种用于求解大型线性系统的数值方法,特别适用于对称正定矩阵。在解拉普拉斯方程时,由于其系数矩阵是对称正定的,高斯迭代法能够快速收敛。 具体步骤如下: 1. **离散化**: 将连续区域划分为网格,用网格节点上的未知函数值表示连续函数。对每个节点,根据偏微分方程的边界条件建立差分方程。 2. **构造线性系统**: 对每个内部节点,根据差分方程构建一个线性方程,形成一个大型的稀疏矩阵。矩阵的非零元素与网格间距、偏微分方程的系数以及相邻节点的函数值有关。 3. **高斯迭代**: 高斯迭代法的核心是迭代公式,每次迭代更新矩阵的一个行或列,直至达到预定的收敛标准。初始值可以是全零向量或者基于某种近似解的值。 4. **收敛检查**: 在每一步迭代后,计算残差并判断是否满足预设的收敛准则,如残差绝对值的相对变化小于某个阈值。 5. **输出结果**: 当满足收敛条件时,停止迭代,得到的解即为网格上每个节点的函数值。 在Python中,我们可以使用`scipy.sparse.linalg`模块实现高斯迭代法。例如,`scipy.sparse.linalg.gmres`函数可进行广义最小残差迭代,而`scipy.sparse.linalg.cg`函数则适用于共轭梯度法。这些函数允许我们自定义迭代过程中的预处理步骤,以提高效率。 在提供的压缩包文件`a35257ee00c746a496e9b10578e75c66`中,可能包含了相关的代码示例或数据,用于演示如何使用Python实现高斯迭代法解拉普拉斯方程。解压并查看这些文件,可以帮助你更好地理解和应用上述理论知识。 总结来说,Python结合NumPy和SciPy库为求解偏微分方程提供了强大支持。高斯迭代法是解决拉普拉斯方程的有效方法,尤其适合处理大规模的线性系统。通过对空间进行离散化和应用迭代算法,我们可以获得数值解,并在实际问题中找到解决方案。
2024-08-23 11:55:30 714B python
1
人工智能(Artificial Intelligence,简称AI)是一种前沿的计算机科学技术,其核心目标是通过模拟、延伸和拓展人类智能来构建智能机器与系统。它融合了计算机科学、数学、统计学、心理学、神经科学等多个学科的知识,并利用深度学习、机器学习等算法,使计算机能够从数据中学习、理解和推断。 在实际应用中,人工智能体现在诸多领域:如机器人技术,其中机器人不仅能执行预设任务,还能通过感知环境自主决策;语言识别和语音助手技术,如Siri或小爱同学,它们能理解并回应用户的语音指令;图像识别技术,在安防监控、自动驾驶等领域实现对视觉信息的精准分析;自然语言处理技术,应用于搜索引擎、智能客服及社交媒体的情感分析等。 此外,专家系统能够在特定领域提供专业级建议,物联网中的智能设备借助AI优化资源分配与操作效率。人工智能的发展不断改变着我们的生活方式,从工作场景到日常生活,智能化正以前所未有的方式提升生产力、便捷性和生活质量,同时也在挑战伦理边界与社会规则,促使我们重新审视人与技术的关系及其长远影响。
2024-08-23 11:51:18 44.28MB python 人工智能 ai
1
推荐了多个详细教程:用python实现地下水位模拟检测
2024-06-25 15:15:33 10KB 课程资源 python
1
本资源中的源码都是经过本地编译过可运行的,下载后按照文档配置好环境就可以运行。资源项目源码系统完整,内容都是经过专业老师审定过的,基本能够满足学习、使用参考需求,如果有需要的话可以放心下载使用。
2024-06-17 20:38:36 108KB python 爬虫 网站爬虫
1
随着信息时代的发展,图书管理系统作为图书馆和学校重要的信息管理工具,面临着信息化需求和服务质量的提升。本选题旨在设计一套高效的图书管理系统,以满足日益增长的图书管理需求。
2024-05-30 11:48:16 6.54MB python
1