内容索引:Delphi源码,系统相关,硬件,特征码  Delphi获取电脑硬件的特征码信息,也就是大家学说的硬件ID信息,本程序获取的ID主要有:逻辑硬盘号、物理硬盘号、网卡MAC、Bios、CPU、Windows版本等,列出固件中在出厂时烧录进的唯一ID标识,用来编写硬件检测软件时候能用上其中的模块。
2024-11-24 22:42:36 329KB Delphi源代码 系统相关
1
MyCCL特征码定位器 V2.1l.exeMyCCL特征码定位器 V2.1l.exe
2024-10-16 20:21:25 392KB V2.1l.exe
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1
关于数据集 以下是数据集中每个特征的描述: building_id:数据集中每栋建筑物的唯一标识符。 district_id:建筑物所在区域的标识符。 vdcmun_id:建筑物所在的村庄发展委员会/市政府的标识符。 ward_id:村庄发展委员会/市政当局内特定行政区的标识符。 count_floors_pre_eq:地震前建筑物的楼层数。 count_floors_post_eq:地震后建筑物的楼层数(可能与地震前的数量不同)。 age_building:地震发生时的建筑物年龄。 plinth_area_sq_ft:建筑物底座的面积(平方英尺)。 height_ft_pre_eq:地震前建筑物的高度(英尺)。 height_ft_post_eq:地震后建筑物的高度(以英尺为单位)。 land_surface_condition:建筑物所在地表的状况(例如“平坦”、“缓坡”、“陡坡”)。 foundation_type:建筑物所用地基的类型(例如“泥砂浆-石头/砖”、“竹子/木材”、“水泥-石头/砖”)。 roof_type:建筑物的屋顶类型(例如,“竹/木
2024-09-16 13:02:39 8.59MB 数据集
1
BP神经网络的数据分类-语音特征信号分类,主要根据BP神经网络理论,在MATLAB软件中实现基于BP神经网络的语言特征信号的分类算法。包括数据选择和归一化,BP神经网络构建、BP神经网络训练以及BP神经网络分类。
2024-09-14 12:15:47 368KB BP神经网络 MATLAB仿真
1
核主元分析KPCA,主要用于数据降维。核主成分分析(Kernel Principal Component Analysis, KPCA)方法是PCA方法的改进,从名字上也可以很容易看出,不同之处就在于“核”。使用核函数的目的:用以构造复杂的非线性分类器。
2024-09-10 11:35:14 209KB 特征降维
1
在图像识别领域,基于边界距和面积特征的零件图像识别方法是一种重要的技术手段,它主要用于自动识别和分类不同类型的零件图像。这种方法的核心是利用图像的几何特性,即边界距离和区域面积,来提取特征并进行模式匹配。接下来,我们将详细探讨这种识别方法的关键概念、步骤以及其在实际应用中的价值。 我们要理解什么是边界距和面积特征。边界距通常指的是图像中一个物体边缘到另一个物体或图像边界之间的距离。这个特征可以帮助我们识别出物体之间的相对位置和排列方式,这对于识别零件的组装关系或定位非常重要。另一方面,面积特征是指图像中特定区域所占据的像素数量,这直接反映了物体的大小和形状,对于区分形状相似但大小不同的零件至关重要。 基于这些特征的识别过程一般包括以下几个步骤: 1. 图像预处理:需要对原始图像进行预处理,包括去噪、灰度化、二值化等,以增强图像的对比度和清晰度,使边界更加明显。 2. 边缘检测:应用边缘检测算法(如Canny算法、Sobel算子或Hough变换)来提取图像的边界信息,从而获得物体的轮廓。 3. 区域分割:通过连通成分分析或阈值分割等方法,将图像分割成不同的部分,每个部分代表一个可能的零件。 4. 特征提取:计算每个区域的边界距和面积,作为该零件的特征向量。边界距可能涉及到多个方向的距离,而面积则是一个简单的数值。 5. 模式匹配与分类:将提取的特征与预先建立的零件模板库进行比较,通过计算相似度(如欧氏距离、余弦相似度或马氏距离)来确定最匹配的模板,进而对零件进行分类。 6. 后处理:根据识别结果进行校正和优化,例如处理重叠或遮挡的零件,提高识别的准确性和鲁棒性。 在实际的工业应用中,基于边界距和面积特征的零件图像识别方法广泛应用于自动化生产线的质量控制、装配检测和库存管理。它可以极大地提高生产效率,减少人工干预,降低错误率,并为智能制造提供关键技术支持。 总结来说,基于边界距和面积特征的零件图像识别方法是图像处理和计算机视觉领域的一种实用技术,它通过提取和分析图像的几何特性来实现高效准确的零件识别。这种方法的实施需要经过一系列的图像处理步骤,并依赖于有效的特征表示和匹配策略。在现代工业自动化和智能系统中,这种方法扮演着不可或缺的角色。
2024-09-06 16:05:45 3KB 零件图像识别
1
在Halcon机器视觉软件中,处理图像和区域特征是一项核心任务。本篇主要讨论如何从Image图像中的Region区域获取各种特征参数,这对于图像分析、识别和分类至关重要。以下是一些关键函数及其作用的详细说明: 1. **area_center_gray**: 这个函数用于计算Region区域的面积(Area)以及重心坐标(Row, Column)。面积是区域内像素数量的总和,重心则是区域内像素位置的平均值,这对于理解区域的大小和位置很有帮助。 2. **cooc_feature_image**: 它用于计算共生矩阵并提取灰度特征值,包括Energy(能量),Correlation(相关性),Homogeneity(均一性)和Contrast(对比度)。这些特征值反映了图像像素灰度值的分布特性,对于纹理分析特别有用。 3. **cooc_feature_matrix**: 该函数基于共生矩阵计算出上述的灰度特征值,可以用于进一步的纹理分析。 4. **elliptic_axis_gray**: 它用于计算Region的主轴长度(Ra, Rb)和旋转角度(Phi),这对于识别和测量图像中椭圆形或圆形的物体非常有帮助。 5. **entropy_gray**: 这个函数计算区域的熵(Entropy)和各向异性(Anisotropy)。熵是衡量区域灰度分布不确定性的一个指标,而各向异性则反映了区域灰度分布的对称性。 6. **estimate_noise**: 通过此函数可以从单个图像中估计噪声水平(Sigma),有多种方法可供选择,例如foerstner、immerkaer、least_squares和mean,这些方法可以帮助优化后续的图像处理步骤。 7. **fit_surface_first_order** 和 **fit_surface_second_order**: 这两个函数用于拟合一阶和二阶灰度平面,分别计算相应的逼近参数(Alpha, Beta, Gamma)和(Alpha, Beta, Gamma, Delta, Epsilon, Zeta)。它们可用于平滑图像,去除噪声,或进行表面分析。 8. **fuzzy_entropy** 和 **fuzzy_perimeter**: 这两个函数提供了一种处理模糊边界的方法,计算区域的模糊熵和模糊周长,适用于边缘不清晰或者定义模糊的区域。 9. **gen_cooc_matrix**: 生成共生矩阵,这对于分析相邻像素之间的灰度关系非常有用,是纹理分析的基础。 10. **gray_histo** 和 **gray_histo_abs**: 这两个函数用于获取图像区域的灰度直方图,可以是相对的或绝对的,有助于理解区域灰度值的分布。 11. **gray_projections**: 计算水平和垂直方向的灰度值投影,这在检测线状结构或进行边缘检测时非常有效。 12. **histo_2dim**: 用于计算双通道灰度图像的二维直方图,这对于彩色图像的分析尤为重要。 13. **intensity**: 提供区域的灰度平均值(Mean)和标准偏差(Deviation),这对于识别和区分不同灰度级别的区域十分关键。 14. **min_max_gray**: 这个函数可以找到区域内最小和最大的灰度值,这对于阈值设定和其他图像分割操作具有指导意义。 Halcon提供的这些功能使开发者能够深入地分析和理解图像中的Region区域,从而实现精确的图像处理和机器视觉应用。无论是进行形状分析、纹理识别还是特征提取,这些工具都是不可或缺的。通过熟练掌握这些函数,可以有效地解决实际问题,提高自动化系统的性能。
2024-09-05 11:10:07 161KB
1
基于AUC的特征选择是一种用于机器学习中降维和提高模型泛化能力的方法。AUC(Area Under Curve,ROC曲线下的面积)是评估分类模型性能的重要指标,尤其在样本不平衡的情况下表现更加稳定。传统的特征选择方法往往关注单个特征的好坏,而忽视了特征间的互补性,即不同特征之间如何协同工作共同提高分类性能。 ANNC(Maximizing Nearest Neighbor Complementarity)是一种新颖的特征选择方法,它在AUC的基础上,通过考虑最近邻的互补性来提高特征选择的效率。这种方法不仅关注最近邻错分类信息(nearest misses),也考虑最近邻正分类信息(nearest hits),从而全面评价特征对之间的互补性。互补性意味着某些特征在组合中相互增强,通过相互协作能达到更佳的分类效果。 在ANNC方法中,最近邻的计算是在特征空间的不同维度上进行的,以此来评估特征之间的互补性。这种方法的优势在于它提供了一种新颖的方式来判断在另一个特征的辅助下,一个特征的区分度如何。然而,邻域信息通常对噪声很敏感,仅仅考虑一侧的信息(如最近邻错分类)可能会忽视正分类对特征互补性的影响。 ANNC方法的核心在于将这种局部学习基于的互补性评价策略整合到基于AUC的特征选择框架中,从而全面评价特征对之间的互补性。这样做有助于捕捉那些能够相互协作、共同提升识别性能的互补特征。 本文作者提出了ANNC这一算法,并在公开的基准数据集上进行了广泛的实验,以多种度量标准验证了新方法的有效性。实验结果表明,在不同的数据集和各种度量指标下,ANNC方法都显示出显著的性能提升。 ANNC方法不仅考虑了每个特征本身的特性,而且结合了特征之间的相互作用,从而提供了一种更为全面的特征选择策略。这对于复杂的学习场景,如文本分类、图像检索、疾病诊断等,都有着极其重要的意义。由于这些场景下的样本通常由大量的特征来描述,因此找到一个有效的特征子集,对于提高分类器性能和模型的可解释性至关重要。 ANNC的研究论文强调了特征互补性在提高分类性能方面的重要性,并通过实际的实验验证了这一点。特征互补性的概念可以推广到不同的机器学习任务中,而不仅仅是特征选择。在特征工程领域,了解特征之间的关系有助于构建更加强大和鲁棒的机器学习模型。因此,ANNC的贡献不仅限于其作为一个新的特征选择算法,更在于它为我们理解特征相互作用提供了一种新的视角。
2024-08-29 13:36:06 767KB 研究论文
1
"VirTest(特征码定位工具)"是一款专门用于识别和定位恶意软件特征码的专业工具,它在IT安全领域中扮演着重要角色。免杀技术,即躲避杀毒软件检测的技术,是许多恶意软件开发者用来逃避安全防护的一种手段。而VirTest正是针对这一需求,提供了科学且精确的定位方法,使得安全研究人员和反病毒专家能够更有效地检测和分析潜在的威胁。 在传统的反病毒解决方案中,特征码是识别恶意软件的关键。特征码是一段特定的二进制序列,与已知病毒或恶意软件的代码相匹配。VirTest通过其独特的算法,能够高效地定位这些特征码,从而帮助用户分析未知文件是否包含恶意行为。这一点对于更新杀毒软件的病毒库和提升检测率至关重要。 "MYCCL"和"CCL"是过去常用的特征码比较工具,它们在过去的反病毒领域中有一定的影响力。然而,随着恶意软件技术的不断演进,它们可能无法满足现代安全需求。VirTest的出现,表明它在准确性和效率上已经超越了这些传统工具,成为了一个更先进的选择。 使用VirTest,用户可以快速扫描和解析文件,找出其中可能隐藏的恶意特征码。这对于逆向工程、病毒分析以及恶意软件研究工作来说,极大地提升了工作效率。它可以帮助安全专家及时发现和应对新的威胁,保护用户的系统免受侵害。 尽管"VirTest"具备如此出色的性能,但它却是一个相对不为人知的工具。这可能是因为其开发者没有进行大规模的市场推广,或者是因为它主要在专业安全社区内部流传。然而,对于那些了解其价值的人来说,VirTest无疑是一款不可或缺的利器。 "VirTest"是一个强大的特征码定位工具,它在免杀技术的对抗中起着关键作用。通过精准的特征码定位,它可以辅助安全专家更有效地识别和抵御恶意软件,为网络安全提供坚实保障。尽管它可能不是广为人知的主流工具,但对于熟悉其功能的专业人士而言,它具有极高的实用价值和专业地位。
2024-08-28 15:16:15 303KB
1