当空间圆的大小达到无穷大时,我们讨论了在热力学极限中由较高的qKdV电荷修饰的2d CFT的分配函数。 在此极限下,鞍点近似是精确的,并且在无限中心电荷下,可以明确计算出广义划分函数。 我们表明,可以将对自由能的领先的1 / c校正重新表示为Young tableaux的总和,我们可以为前两个qKdV电荷进行计算。 接下来,我们将广义集合与包含单个主要状态的“本征状态集合”进行比较。 在无限的中心电荷下,对于qKdV逸度的任何值,集合都在本地操作员的期望值级别上匹配。 当中心电荷很大但很有限时,对于任何逸度值,上述集合都是可以区分的。
1