内容概要:本文详细介绍了非支配排序多目标灰狼优化算法(NSGWO)的Matlab实现,涵盖了算法的核心思想、关键技术实现以及丰富的测试函数和工程应用场景。首先,文章解释了NSGWO如何将灰狼的社会等级制度与多目标优化的非支配排序相结合,通过α、β、δ三个等级的狼来引导种群进化。接着,重点讨论了目标函数的向量化操作、种群更新策略、收敛因子的设计等关键技术点。此外,还提供了46个标准测试函数及其评价指标,如超体积(HV)等。最后,通过天线设计、电机设计等多个工程案例展示NSGWO的实际应用价值。 适合人群:具备一定数学建模和优化理论基础的研究人员、工程师,尤其是从事多目标优化研究和技术开发的专业人士。 使用场景及目标:适用于需要同时优化多个相互冲突的目标的场景,如天线设计、机械设计等领域。主要目标是帮助用户理解和掌握NSGWO算法的实现原理,并能够将其应用于实际工程项目中。 其他说明:文中不仅提供了详细的代码实现,还分享了许多实用的小技巧,如矩阵运算优化、并行计算加速等。对于希望进一步改进算法的读者,文章还探讨了NSGWO与其他模型(如LSTM)结合的可能性。
2025-06-24 20:36:30 258KB
1
基于Tent映射的混合灰狼优化算法:结合混沌初始种群与非线性控制参数的改进策略,基于Tent映射的混合灰狼优化算法:结合混沌初始种群与非线性控制参数的改进策略,一种基于Tent映射的混合灰狼优化的改进算法_滕志军 MATLAB代码,可提供代码与lunwen。 首先,其通过 Tent 混沌映射产生初始种群,增加种群个体的多样性; 其次,采用非线性控制参数,从而提高整体收敛速度; 最后,引入粒子群算法的思想,将个体自身经历过最优值与种群最优值相结合来更新灰狼个体的位置信息,从而保留灰狼个体自身最佳位置信息。 ,核心关键词:Tent混沌映射; 灰狼优化; 混合算法; 非线性控制参数; 粒子群算法思想。,滕志军改进算法:Tent映射混合灰狼优化算法的MATLAB实现
2025-06-18 01:39:14 435KB
1
内容概要:本文介绍了一种利用灰狼优化算法(GWO)优化最小二乘支持向量机(LSSVM)参数的方法。首先解释了GWO的基本原理,即通过模拟狼群捕猎的行为来寻找最优解。文中详细展示了如何将GWO应用于LSSVM的两个重要参数——惩罚参数c和核函数参数g的优化过程中。接着提供了具体的Python和Matlab代码实现,包括适应度函数的设计、狼群位置的更新规则以及完整的优化流程。此外,还给出了实际案例的应用,如轴承故障数据集的预测精度显著提高,并讨论了一些常见的注意事项和技术细节。 适合人群:从事机器学习研究或应用的技术人员,尤其是对超参数优化感兴趣的开发者。 使用场景及目标:适用于需要高效优化LSSVM模型参数的场景,旨在帮助研究人员减少手动调参的时间成本,同时获得更好的模型性能。 其他说明:文中提供的代码可以直接在Windows系统上运行,用户只需准备好自己的数据集并适当调整相关参数即可使用。对于初学者来说,这是一个非常友好的入门级项目,能够快速上手并看到实际效果。
2025-05-04 08:46:54 318KB 机器学习 参数优化 Windows系统
1
标题中的“优化分数阶PD滑模控制器:灰狼优化器优化的分数阶PD滑模控制器,第二个代码-matlab开发”表明我们正在讨论一个利用MATLAB编程环境开发的控制系统设计,具体是基于灰狼优化器(Grey Wolf Optimizer, GWO)的分数阶PD滑模控制器。这个控制器设计是针对系统优化和控制性能提升的一个实例。 我们要理解分数阶微分方程在控制系统中的应用。与传统的整数阶微分方程相比,分数阶微分方程能更精确地描述系统的动态行为,因为它考虑了系统记忆和瞬时效应的混合。分数阶PD控制器(Fractional-Order Proportional Derivative, FOPD)结合了比例(P)和导数(D)的分数阶特性,可以提供更精细的控制响应,如改善超调、减小振荡等。 接下来,滑模控制(Sliding Mode Control, SMC)是一种非线性控制策略,它通过设计一个滑动表面,使系统状态在有限时间内滑向该表面并保持在上面,从而实现对系统扰动的鲁棒控制。分数阶滑模控制器则将滑模控制理论与分数阶微分方程结合,增强了控制的稳定性和抗干扰能力。 灰狼优化器(GWO)是一种基于群智能算法的全局优化方法,模拟了灰狼狩猎过程中的领导、搜索和合作策略。在本案例中,GWO被用于优化分数阶PD控制器的参数,寻找最佳的控制器设置,以最大化控制性能,比如最小化误差、改善响应速度和抑制系统振荡。 在MATLAB中实现这样的控制器设计,通常包括以下步骤: 1. **模型建立**:需要建立系统模型,这可能是一个连续时间或离散时间的分数阶动态系统。 2. **控制器设计**:设计分数阶PD控制器结构,并确定其参数。 3. **优化算法**:利用GWO或其他优化算法调整控制器参数,以达到预定的控制性能指标。 4. **仿真与分析**:在MATLAB环境下进行系统仿真,观察控制器对系统性能的影响,如上升时间、超调、稳态误差等。 5. **结果评估**:根据仿真结果评估控制器性能,可能需要迭代优化过程以找到最优解。 压缩包中的“upload.zip”文件可能包含了MATLAB源代码、控制器设计的详细说明、系统模型数据以及仿真实验的结果。通过解压并研究这些文件,我们可以深入理解如何应用GWO优化分数阶PD滑模控制器的具体实现细节和优化过程。 这个项目展示了如何结合现代优化算法(GWO)和先进的控制理论(分数阶滑模控制)来改善系统的控制性能,对于理解和应用这类技术在实际工程问题中具有重要的参考价值。
2025-04-08 18:35:16 5KB matlab
1
基于灰狼优化算法的机器人三维路径规划:mp-GWO与CS-GWO算法对比及详细代码注释,三维路径规划:基于灰狼改进算法的MP-GWO与CS-GWO机器人路径规划算法对比,内含详细代码注释,三维路径规划 基于灰狼改进算法的机器人路径规划mp-GWO和CS-GWO机器人路径规划算法 自由切GWO,CS-GWO算法进行对比。 内涵详细的代码注释 ,三维路径规划; 灰狼改进算法; 机器人路径规划算法; mp-GWO; CS-GWO; 算法对比; 代码注释,基于灰狼优化算法的三维机器人路径规划研究:mp-GWO与CS-GWO算法的对比与代码详解
2025-04-08 16:24:47 1.09MB 数据结构
1
融合多策略灰狼优化算法:源码详解与性能优越的学习资料,原创改进算法,包括混沌初始化、非线性控制参数及自适应更新权重等策略,融合多策略改进灰狼优化算法:源码详解与深度学习资料,高效性能与原创算法技术,融合多策略的灰狼优化算法 性能优越 原创改进算法 源码+详细注释(方便学习)以及千字理论学习资料 改进策略:改进的tent混沌初始化,非线性控制参数,改进的头狼更新策略,自适应更新权重 ,融合灰狼优化算法; 性能优越; 原创改进算法; 改进策略; 详细注释; 理论学习资料,原创灰狼优化算法:融合多策略、性能卓越的改进版
2025-03-26 17:04:42 1.01MB ajax
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-03-22 20:15:25 2.22MB matlab
1
采用灰狼优化算法求解多旅行商问题
2024-02-18 18:05:11 14KB 灰狼算法 多旅行商问题
1
灰狼优化算法GWO优化SVM支持向量机惩罚参数c和核函数参数g,有例子,易上手,简单粗暴,替换数据即可,分类问题。 仅适应于windows系统
2024-01-23 09:05:21 239KB 支持向量机
1
单区域负荷频率控制模型,时间乘误差绝对积分ITAE目标函数,GWO算法
2024-01-14 20:25:30 32KB PID参数整定
1