OpencvSharp资料,采用C#加Winform编写,包含接近50个Demo,直接运行即可。 例程包含:模板匹配、边缘识别、人脸识别,灰度变化、标定等。
2024-12-30 13:53:36 555KB 数据结构
1
在计算机视觉领域,OpenCV(开源计算机视觉库)是一个强大的工具,用于处理图像和视频数据。本篇文章将深入探讨如何使用OpenCV来计算图像的灰度直方图,并理解其在图像分析中的重要性。 我们要理解什么是灰度直方图。在图像处理中,灰度图像是一种没有色彩信息,只有亮度级别的图像。每个像素点用一个0到255之间的整数值表示,0代表黑色,255代表白色,中间的值则对应不同的灰度层次。灰度直方图就是这些灰度值在图像中出现频率的可视化表示,它可以帮助我们理解图像的整体亮度分布和局部特征。 OpenCV提供了方便的函数`cv::calcHist`来计算直方图。为了计算灰度图像的直方图,我们需要先将彩色图像转换为灰度图像,这可以通过`cv::cvtColor`函数完成,一般使用`COLOR_BGR2GRAY`作为转换代码。例如: ```cpp cv::Mat colorImage = ...; // 输入彩色图像 cv::Mat grayImage; cv::cvtColor(colorImage, grayImage, cv::COLOR_BGR2GRAY); ``` 接下来,我们可以使用`cv::calcHist`计算灰度直方图: ```cpp cv::Mat histogram; int histSize = 256; // 因为灰度值范围是0到255 float range[] = {0, 256}; // 直方图的边界 const float* histRange = {range}; bool uniform = true, accumulate = false; cv::calcHist(&grayImage, 1, 0, cv::Mat(), histogram, 1, &histSize, &histRange, uniform, accumulate); ``` 这里的参数`histSize`指定了直方图的bin数量,`histRange`定义了灰度值的范围,`uniform`和`accumulate`分别表示是否假设灰度值均匀分布和是否累加直方图。 有了直方图,我们可以通过`cv::normalize`进行归一化,以便于可视化。然后可以使用`cv::imshow`函数展示直方图: ```cpp cv::normalize(histogram, histogram, 0, 1, cv::NORM_MINMAX); cv::Mat histImage(256, 256, CV_8UC3, Scalar(0, 0, 0)); for (int i = 1; i < 256; i++) { int barWidth = cvRound(255 * histogram.at(i - 1) / maxHistogramValue); cv::rectangle(histImage, Point(i - 1, 255), Point(i + barWidth - 1, 0), Scalar(255, 255, 255), -1); } cv::imshow("Gray Histogram", histImage); cv::waitKey(); ``` 通过分析灰度直方图,我们可以获取关于图像的一些重要信息,比如图像的明亮部分、暗部以及是否有明显的峰值或平直段。这在图像增强、对比度调整、阈值分割等任务中非常有用。例如,如果直方图显示图像大部分像素集中在亮部,可能需要降低全局亮度;如果直方图有明显的尖峰,可能表明图像中有特定的灰度值频繁出现。 在提供的"GrayHistImage"文件中,很可能包含了一个示例程序,该程序展示了如何用OpenCV计算并绘制一个图像的灰度直方图。通过阅读和运行这个程序,你可以更好地理解和实践上述理论知识。 理解如何使用OpenCV计算和解析灰度直方图是图像处理中的基本技能,它可以帮助我们洞察图像的特性,并在后续的图像分析和处理任务中发挥关键作用。
2024-10-28 11:30:47 16.2MB opencv 图像灰度直方图
1
尚书六号汉字表格识别系统是款不错的图像文字识别软件,支持tiff、bmp、jpg等格式的识别,可以对彩色、灰度图像文件直接进行识别,与此同时,尚书六号完善了表格识别功能,各式各样的表格几乎都可以原封不动的由图片格式转变为可以自由编辑的文字格式。 “尚书六号”可以对彩色、灰度图像文件直接进行识别;尚书六号支持更多的扫描文件格式,例如tiff、bmp和jpg格式;与此同时,尚书六号完善了表格识别功能,各式各样的表格几乎都可以原封不动的由图片格式转变为可以自由编辑的文字格式。
2024-09-10 17:09:50 38.61MB
1
二维灰度图像的小波变换和逆变换在计算机视觉与图像处理领域中扮演着重要的角色。小波变换是一种信号分析工具,能够将复杂信号分解为不同尺度和位置的局部特征,对于图像处理而言,这意味着可以对图像进行多分辨率分析,提取不同层次的细节信息。 在C++中实现小波变换,通常会用到一些开源库,如Wavelet Toolbox或OpenCV。这些库提供了丰富的函数和结构,便于开发者进行小波分析。在这个项目中,可能包含的源码文件有以下几个部分: 1. **数据读取与预处理**:使用C++的文件操作函数读取二维灰度图像,将其转换为适当的数组格式。可能使用OpenCV库中的`imread`函数来读取图像,并进行必要的预处理,例如调整图像尺寸、归一化等。 2. **小波基的选择**:小波变换涉及到多种小波基,如Haar小波、Daubechies小波、Symlet小波等。不同的小波基适用于不同的应用需求,选择合适的小波基是关键步骤。在代码中,可能会定义一个类或者结构体来表示特定的小波基函数。 3. **小波变换**:小波变换分为离散小波变换(DWT)和离散二维小波变换(2D-DWT)。2D-DWT对图像的行和列分别进行一维DWT,然后通过卷积或蝶形运算组合结果。这一过程在代码中可能包含两个递归或循环的步骤,分别对应水平和垂直方向的变换。 4. **图像分解**:小波变换后,图像被分解为低频系数(近似图像)和高频系数(细节图像)。这些系数通常存储在不同的数组或矩阵中,便于后续的处理。 5. **逆小波变换**:为了恢复图像,需要进行逆小波变换。这通常涉及到对高频系数的逆操作,以及与低频系数的合并。逆变换的过程与正向变换类似,但步骤相反。 6. **结果输出**:处理完成后,将重构的图像写入文件,通常使用OpenCV的`imwrite`函数。同时,可能还会提供可视化工具,如MATLAB的图像显示功能,以便观察变换前后图像的差异。 7. **编译与运行**:项目可能包含Makefile文件,用于配置编译选项和链接库。用户可以通过执行`make`命令来编译源码,生成可执行程序,然后运行程序来处理指定的图像。 学习这个项目的源码,可以帮助理解小波变换在图像处理中的实际应用,以及如何利用C++实现这些算法。此外,对于深入掌握小波理论、图像处理技术以及C++编程技巧都是非常有价值的。通过实践,开发者可以进一步优化代码性能,适应更复杂的图像处理任务。
2024-08-12 22:52:28 227KB 小波变换 图像处理
1
在图像处理领域,VC++是一种常用的编程语言,它结合了强大的MFC(Microsoft Foundation Classes)库,能够方便地实现各种图像处理任务。本项目聚焦于图像的分割与灰度处理,利用GDI(Graphics Device Interface)图形设备接口,这是一种Windows操作系统下的标准绘图工具,可以高效地处理图像数据。 我们要理解“图像分割”。图像分割是图像分析的关键步骤,它将图像划分为多个区域或对象,每个区域具有相似的特性,如颜色、纹理或亮度。在VC++中,可以使用不同的算法来实现,如阈值分割、边缘检测(如Canny算法)、区域生长等。这个项目可能采用了阈值分割,通过设定一个阈值来区分图像中的前景和背景,从而达到分割目的。 接着,是“灰度处理”。灰度处理是将彩色图像转换为单色图像的过程,每个像素由一个灰度级表示,通常是一个0到255的整数值,代表从黑色到白色的渐变。在VC++中,可以使用OpenCV库或者其他自定义函数来实现灰度转换,例如将RGB三通道颜色值取平均得到灰度值。 在这个项目中,代码会统计出黑色像素点的数量。这可能是通过遍历图像矩阵,检查每个像素的灰度值是否低于某个阈值(如0,代表黑色),然后计数。这个统计信息对于分析图像的构成或者进行后续的图像分析很有用。 接下来,我们讨论绘制出的4幅图: 1. 原图:保持图像原始的颜色和亮度信息,用于对比处理后的效果。 2. 分割图:显示了图像分割的结果,不同的区域可能有不同的颜色,便于观察物体或区域的分离。 3. 灰度分割图:结合了图像分割和灰度处理,所有像素只有一维的灰度信息,但仍然保留了分割的效果。 4. 比例图:可能是图像中黑色像素点的分布比例,或者用图形表示黑色像素点占总像素的比例,帮助理解图像的黑白分布情况。 GDI的使用简化了这些图像的绘制过程,开发者可以通过创建位图对象、选择画刷和画笔、设置颜色、以及调用DrawBitmap等函数来绘制图像和图形。 通过下载和学习此源代码,你可以深入理解VC++如何结合GDI进行图像处理,包括基本的图像读取、像素操作、图像显示,以及如何实现特定的图像处理算法。这对于提升你的图像处理技能,特别是使用VC++和GDI进行开发的能力,有着显著的帮助。同时,这也是一个很好的实践案例,教你如何将理论知识应用到实际项目中,进一步巩固和扩展你的编程技巧。
2024-07-15 16:50:40 653KB VC++ 图像分割 灰度处理
1
灰度和彩色图像处理,word版本 可编辑,附分析与总结 读取二进制文件lab3prob4,文件的尺寸是435*580,图像数据类型为‘uint8’,(1)读取并显示图像,colormap设置为gray;(2)重新显示(1)中图像,colormap设置为HSV; (3)自己尝试定义一个新的colormap,幅度值的变化范围为[0 255]。 分别读取二进制文件lab3prob3r, lab3prob3g, lab3prob3b, 图像数据类型为‘uint8’,图像的尺寸是1024*1024,(1)合并RGB三通道,并显示图像;(2)对RGB三个通道分别进行灰度线性处理,实现三个通道的灰度值均值为140,均方差为60,然后再合并显示图像;(3)把RGB颜色模型转换到HSV颜色模型,对V分量进行线性变换实现均值为140,均方差为60,然后显示新的图像;(4)比较(2)和(4)中图像,进行简单分析和说明; 创建如下图1所示图像,一个圆为红色,一个圆为蓝色,另外一个圆为绿色,圆的半径为100。(1)组建一个RGB图使其显示如下颜色,B的中心坐标(400,375),G的中心坐标(300,420),R的中心坐标(300,300);(2)分别使R,G,B中的一个值为0.5 (原来为1,单位化后的值范围(0-1)),并显示得到的图的颜色;(3)创建如图2所示的颜色盘(中心坐标(100,100)),半径为100;(提示使计算在HIS空间,然后利用HSV2rgb转化);
2024-05-21 14:51:43 9.03MB 数字图像处理 实验报告 灰度和彩
1
matlab实现灰度图像的混沌加解密,利用混沌加密序列对图像进行加密,这样能有效防止图像被被人窃取
2024-05-08 17:21:18 719B
1
所使用的是正点原子探索者开发板,其他同理,改动代码就行,效果详见B站链接https://www.bilibili.com/video/BV1dB4y1k7XN/?spm_id_from=333.999.0.0&vd_source=06d06192a2ff6643ccdab6c1aeae235b
2024-05-05 17:49:30 7.77MB stm32 图像处理 二值化
1
matlab灰色处理代码JPEG压缩实现 这是我在阿尔伯塔大学MM806-(图像和视频处理)课程的第四次编程作业。 这项任务的目的是理解和欣赏JPEG压缩机制。 作业问题(由Nilanjan Ray教授设定)如下: 您的编码器是实际基准系统的简化版本。 首先,它假定为灰度输入图像。 让用户选择一个图像。 因此,没有颜色转换。 然后根据输入图像创建8x8块。 如果图像的高度和宽度不是8的倍数,请对图像进行零填充。 然后,对于每个8x8块,应用DCT。 接下来将量化应用于DCT系数。 为了进行量化,请使用此表。 接下来,以Z字形顺序对量化的DCT系数重新排序。 对DC系数应用差分编码,对AC系数应用游程长度编码。 将这些差分编码的DC和游程编码的AC系数以及图像高度和图像宽度写入文本文件。 这样就完成了您的编码器。 注意,实际上,您将霍夫曼编码进一步应用到差分编码DC和游程编码AC系数。 为了简单起见,我们在这里跳过霍夫曼编码。 解码器读取文本文件,并反转编码器的每个步骤,最后显示图像。 使用Matlab内置的“ cameraman.tif”,“ pout.tif”等对您的程序进行测试。您
2024-05-03 16:31:16 8KB 系统开源
1
基于qt5.15.2,与《Day38QChart绘制直方图》文章对应,留下数据更新接口便于直接嵌入程序使用。
2024-04-08 15:50:51 7KB QChart
1