任何一种求解瑞利导波频散曲线的解析方法都会出现高频数值溢出现象,如何避免Abo-Zena,Menke和张碧星等研究的传递矩阵法计算中的高频数值溢出,这是本文研究的核心问题.传递矩阵法中的频散方程是一个实方程,可用二分法求根.当传递矩阵中与频率有关的指数项的指数部分的模趋近很大时,用"-1"或者"-i"代替指数部分,并令传递矩阵中与频率无关的项为0,则不影响频散函数的正负性,即不影响频散方程的求根.在计算机上编制计算时进行如此处理后,可从根本上解决传递矩阵法计算中高频数值的溢出问题,模拟计算结果也验证了方法的正确性和可行性.
2025-12-11 12:16:50 1.89MB 数值溢出 二分法
1
### 缓冲区溢出测试知识点详解 #### 一、缓冲区溢出概念与危害 缓冲区溢出是一种常见的安全漏洞,它发生在程序试图将更多的数据写入比分配空间更小的内存区域时。这种行为可能导致敏感数据泄露、程序崩溃甚至被攻击者利用来执行恶意代码。 #### 二、缓冲区溢出示例分析 本文通过一个具体的C++程序示例,详细解释了如何发现并利用缓冲区溢出漏洞。以下是对该示例的详细解析: 1. **程序结构**: - 定义了一个`TestOverflow`函数,用于读取文件`TestOverflow.txt`的内容并将这些内容写入一个名为`buf`的缓冲区。 - `main`函数中定义了一个大小为10字节的字符数组`buf`,并调用`TestOverflow`函数,试图将文件内容写入`buf`中。 2. **缓冲区溢出触发**: - 当文件`TestOverflow.txt`的大小超过10字节时,写入操作会导致缓冲区溢出。 - 在实验中,通过不断向文件中添加字母“a”来模拟不同的输入大小。当文件大小达到18个字节时,程序会发生崩溃;而当文件大小达到24个字节时,系统会弹出错误报告,提示EIP寄存器被修改,这表明找到了溢出点。 3. **利用漏洞的过程**: - **步骤一:定位溢出点** - 使用Visual C++ 6.0进行调试,观察到当向`TestOverflow.txt`文件写入24个“a”时,程序崩溃并显示错误报告,其中提到EIP寄存器被修改。 - 观察寄存器窗口,可以看到EIP寄存器的值被改变,这通常意味着攻击者可以通过修改EIP的值来控制程序执行流程。 - **步骤二:分析堆栈状态** - 在`main`函数的最后一行代码处设置断点,以便在程序退出前执行恶意代码。 - 分析反汇编窗口,查看程序的执行流程和寄存器的状态变化。 - 重点关注`pop edi`、`pop esi`和`pop ebx`等指令,这些指令将堆栈顶的数据弹出到对应的寄存器中,并且每次执行后ESP寄存器都会增加4。 - 分析这些指令的作用以及它们如何影响ESP和EIP的值。 #### 三、调试与分析技巧 1. **调试工具**: - 使用Visual C++ 6.0作为调试工具,通过观察寄存器窗口、内存窗口和反汇编窗口来了解程序的内部执行状态。 2. **关键寄存器**: - **ESP**(Stack Pointer):堆栈指针,指向当前堆栈的顶部。 - **EIP**(Instruction Pointer):指令指针,指向下一条要执行的指令。 - **EBP**(Base Pointer):基址指针,用于保存函数调用时的EBP值。 3. **汇编指令**: - **POP**:从堆栈中弹出数据并将其存储到指定的寄存器中。 - **ADD ESP, 50h**:将ESP寄存器的值增加50h(80字节),这通常是为了释放函数调用时压入堆栈的参数。 #### 四、总结 通过以上分析可以看出,缓冲区溢出是一种非常危险的安全漏洞,它不仅可能导致程序崩溃,还可能被恶意攻击者利用来执行任意代码。为了防止这类漏洞的发生,开发者应该遵循最佳实践,例如使用更安全的字符串操作函数(如`strncpy`)、启用编译器提供的安全选项(如地址空间布局随机化ASLR和数据执行保护DEP)以及进行严格的输入验证。此外,对程序进行定期的安全审计和渗透测试也是预防此类漏洞的有效手段。
2025-12-06 11:40:10 88KB 缓冲区溢出测试
1
内容概要:本文介绍了一种新的计量经济学模型——TVP-QVAR-DY溢出指数模型。该模型结合了时变参数(TVP)、分位数回归(QVAR)和DY溢出指数的思想,旨在解决传统QVAR-DY溢出指数方法中存在的窗口依赖性和样本损失问题。通过R语言实现,可以导出静态溢出矩阵、总溢出指数、溢出指数、溢入指数和净溢出指数等结果,并进行可视化展示。与传统方法相比,TVP-QVAR-DY模型不仅避免了窗口依赖性,还提供了更好的拟合效果和更全面的信息。 适合人群:对金融经济学感兴趣的研究人员、经济学家、数据分析员、金融从业者。 使用场景及目标:适用于研究经济变量之间的相互影响,特别是在金融市场波动分析、政策评估等领域。目标是提高对经济系统动态特性的理解和预测能力。 其他说明:该模型的优势在于其灵活性和准确性,能够在不牺牲样本完整性的前提下,提供更为精确的经济变量间关系分析。
2025-12-02 20:57:15 252KB R语言 溢出指数
1
内容概要:本文介绍了一种新的金融经济学模型——TVP-QVAR-DY溢出指数模型。该模型结合了时变参数(TVP)、分位数回归(QVAR)和DY溢出指数的思想,旨在解决传统QVAR-DY溢出指数方法中存在的样本损失和窗口依赖性问题。通过R语言实现,可以导出静态溢出矩阵、总溢出指数、溢出指数、溢入指数和净溢出指数等结果,并进行可视化展示。与传统方法相比,TVP-QVAR-DY模型具有更好的拟合效果和更全面的信息。 适合人群:金融经济学家、数据分析员、量化分析师、研究机构研究人员。 使用场景及目标:适用于金融市场分析、风险管理、政策制定等领域,帮助研究人员更精确地评估经济变量间的相互影响,提高决策科学性和准确性。 其他说明:该模型的优势在于无需设置滚动窗口,避免了样本损失和结果的窗口依赖性,同时提供了更全面的分位点信息,有助于深入理解经济系统内部的复杂关系。
2025-12-02 20:50:18 251KB
1
3.1 叶片曲面生成 *.dat 文件导入 UG,就可以用三次样条曲线拟把包含各个截面站位的翼形离散点数据的 http://www.paper.edu.cn 3
2025-11-07 19:34:46 486KB 首发论文
1
内容概要:本文介绍了HD-TVP-VAR-BK模型及其在金融风险管理中的应用。该模型利用弹性网络(Elastic Net)处理高维数据,能够同时处理100多个变量,显著优于传统的DY溢出指数模型。文中详细展示了如何使用R语言进行模型的安装、配置、数据预处理、核心计算以及结果输出。此外,还提供了关于数据平稳性处理、异常值处理、并行计算优化等方面的实用技巧,并强调了模型在实时监控金融市场波动传导方面的优势。 适合人群:从事金融数据分析、风险管理的研究人员和技术人员,尤其是对高维数据处理感兴趣的从业者。 使用场景及目标:适用于需要处理大规模金融时间序列数据的场景,如宏观经济指标分析、股市波动监测等。主要目标是提高对金融市场波动传导的理解和预测能力,帮助决策者及时应对潜在的风险。 其他说明:文章不仅提供了详细的代码示例,还包括了丰富的图表和动画展示,便于理解和应用。同时,作者分享了一些实践经验,如变量命名规范、内存管理等,有助于读者更好地掌握和运用该模型。
2025-09-06 17:34:15 503KB
1
内容概要:本文深入探讨了HD-TVP-VAR-BK模型在高维多变量DY溢出指数计算中的应用,重点介绍了该模型相较于传统TVP-VAR-BK模型的优势,如更高的维度处理能力和更快的运行速度。文中还详细讲解了利用Elastic Net方法进行降维处理的具体步骤,并通过R语言实现了从数据导入、预处理、溢出指数计算、频域分解到最终结果导出和图表绘制的完整流程。此外,文章强调了HD-TVP-VAR-BK模型在处理大规模经济和金融数据时的重要性和实用性。 适合人群:从事经济学、金融学研究的专业人士,尤其是那些关注高维数据分析和时间序列建模的研究人员。 使用场景及目标:适用于需要分析大量高维时间序列数据的研究项目,旨在揭示不同变量之间的动态关系和溢出效应。通过学习本文,读者可以掌握最新的高维数据分析技术和工具,提升研究效率和质量。 其他说明:虽然本文提供了详细的理论解释和代码实例,但在实际应用中仍需根据具体数据集的特点进行适当调整和优化。
2025-09-06 17:29:44 685KB Elastic
1
HD-TVP-VAR-BK模型:高维多变量DY溢出指数的时变估计与频域分析,HD-TVP-VAR-BK模型:高维多变量DY溢出指数的时变估计与频域分析,HD-TVP-VAR-BK溢出指数,最新模型计算高维多变量DY溢出指数,并进行频域分解计算BK溢出指数 优势:通过Elastic Net方法进行降维处理,能够计算高维数据DY溢出指数,相较于传统TVP-VAR-BK模型只能计算最多20个变量,HD-TVP-VAR-BK可同时估计近百个变量,相较于Lasso BK,Elastic Net BK(弹性网络),HD-TVP-VAR-BK为时变估计,不用损失滚动窗口,且运行速度相对较快。 R语言代码,有注释和案例数据,能导出静态溢出矩阵,总溢出指数Total,溢出指数To,溢入指数From,净溢出指数Net 到 EXCEL,并实现画图。 ,核心关键词: 1. HD-TVP-VAR-BK溢出指数 2. 最新模型高维多变量DY溢出指数 3. 频域分解计算BK溢出指数 4. Elastic Net方法降维处理 5. 高维数据DY溢出指数计算 6. 传统TVP-VAR-BK模型 7. La
2025-09-06 17:17:24 1.56MB 数据结构
1
溢出及处理: 溢出: 结果大于最大值(上益);结果小于最小值(下益)。16位:-32767~32768。 处理:例 X=32766D,y=3D,X+Y=32766+3=1000 0000 0000 0001B(补码)=-32767D,应为32769D。 一般的定点DSP芯片都设有溢出保护功能,当溢出保护功能有效时,一旦出现溢出,则累加器ACC的结果为最大的饱和值(上溢为7FFFH,下溢为8001H),从而达到防止溢出引起精度严重恶化的目的。
2025-08-22 15:59:26 267KB dsp 编程入门
1
基于TVAR模型的DY溢出指数:门槛向量自回归模型与参数估计的LR检验及脉冲响应分析,TVAR,门槛向量自回归模型,LR检验,参数估计,脉冲响应,基于TVAR的DY溢出指数 ,TVAR; 门槛向量自回归模型; LR检验; 参数估计; 脉冲响应; DY溢出指数,基于TVAR模型的参数估计与DY溢出指数研究 在深入探讨基于TVAR模型的DY溢出指数时,首先需要明确TVAR模型本身的含义。TVAR模型即门槛向量自回归模型,是一种能够捕捉数据中结构变化的统计模型,特别适用于分析具有门槛效应的时间序列数据。这种模型的优势在于能够识别数据中的非线性特征,即当某个或某些变量达到特定门槛值时,模型的参数会发生改变。 在应用TVAR模型进行经济数据或金融数据分析时,往往需要进行参数估计。参数估计是统计学中非常关键的一步,它涉及到从数据中推断模型参数的值,以便于模型能够更好地拟合实际数据。参数估计的准确性直接影响到模型的预测能力和解释力。 LR检验(Likelihood Ratio Test)是一种统计检验方法,用于比较两个统计模型的拟合优度。在TVAR模型的参数估计中,通过LR检验可以对不同的模型设定进行比较,选择出能够最好地解释数据的模型结构。LR检验通常涉及到模型复杂度的选择,即选择一个模型而不是另一个模型的证据强度。 脉冲响应分析是另一个在TVAR模型中常用的分析工具。它主要用来分析一个内生变量对来自其他内生变量的“冲击”或“脉冲”的反应程度。在宏观经济或金融市场的分析中,脉冲响应分析能够帮助我们理解某一政策变化或经济冲击是如何随着时间的推移影响经济变量的。 DY溢出指数是指由Diebold和Yilmaz提出的基于向量自回归(VAR)模型的溢出指数,用于衡量系统内变量间的预测误差方差分解,从而评估变量间的溢出效应。在TVAR框架下,基于DY溢出指数的研究可以提供一个更为复杂和动态的视角,来分析经济或金融市场中变量间的相互影响和信息传递。 综合上述内容,可以看到基于TVAR模型的DY溢出指数研究不仅仅局限于传统VAR模型的分析方法,它通过引入门槛效应和参数估计的LR检验,以及脉冲响应分析等方法,能够更深入地揭示经济和金融变量之间的动态互动关系。这种研究方法在经济学和金融学中具有重要的应用价值,尤其是在分析具有非线性特征的复杂系统时,如金融市场、宏观经济政策的制定与实施、以及国际经济的联动效应等方面。 此外,由于文章中提及了“前端”这一标签,虽然它不是本文的主要内容,但可以推测该研究可能涉及到数据的可视化、交互式分析平台的构建等前端技术,以辅助于模型结果的呈现和分析。 基于TVAR模型的DY溢出指数研究是一个集理论与实证、方法论创新与应用拓展于一体的综合性研究领域。通过对模型的深化和拓展,该研究不仅提升了对现实经济金融现象的解释力,也为政策制定者和市场参与者提供了更为丰富的分析工具和决策支持。
2025-08-17 20:39:57 33KB
1