出了一个全新的混合算法并命名为微粒群差分算法,该算法在标准微粒群算法的基础上结合了差分进化算法用于求解约束的数值和工程优化问题。传统的标准微粒群算法由于其种群单一性容易陷入局部最优值,针对这一缺点利用差分进化算法中的变异、交叉、选择3个算子来更新每次迭代每个粒子新生产的位置以使粒子跳出局部优值。融合了标准微粒群算法和差分进化算法优点的混合算法加速了粒子的收敛速度。为了避免惩罚因子的选择对实验结果的影响,采取了可行规则法来处理约束优化问题。最后将微粒群差分算法用于5个基准函数和两个工程问题,并与其他算法作了比较,试验结果表明,微粒群差分算法算法具有很好的精准性、鲁棒性和有效性。
2023-03-15 09:15:37 849KB 混合算法
1
灰狼优化算法(GWO)是目前一种比较新颖的群智能优化算法,具有收敛速度快、寻优能力强等优点。将灰狼优化算法用于求解复杂的作业车间调度问题,与布谷鸟搜索算法进行比较研究,验证了标准GWO算法求解经典作业车间调度问题的可行性和有效性。在此基础上,针对复杂作业车间调度问题难以求解的特点,对标准GWO算法进行改进,通过进化种群动态、反向学习初始化种群以及最优个体变异三个方面的改进操作,测试结果表明,改进后的混合灰狼优化算法能够有效跳出局部最优值,找到更好的解,并且结果鲁棒性更强。
1
为了改善差分进化粒子群算法的局部搜索能力和收敛速度,提出了一种混沌差分进化的粒子群优化算法。该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力。通过对三个标准函数进行测试,仿真结果表明该算法与DEPSO算法相比,全局搜索能力、抗早熟收敛性能及收敛速度大大提高。
1
求解优化问题的混合算法及其应用.pdf
2022-07-12 09:13:15 4.29MB 文档资料
脉冲响应的相关分析算法并检验,采用累计贡献率的方法,阐述了负荷预测的应用研究,FMCW调频连续波雷达的测距测角,包括回归分析和概率统计,加入重复控制。
2022-06-18 09:06:25 4KB 毕设 粒子群 K均值聚类
针对利用粒子群优化算法进行多极值函数优化时存在早熟收敛和搜索效率低的问题,提出混合的PSO-BFGS算法,并增强了混合算法的变异能力使算法能逃出局部极值点。通过对三种Benchmark函数的测试结果表明,PSO-BFGS算法不仅具有有效的全局收敛性能,而且还具有较快的收敛速度,是求解最优化问题的一种有效算法。
2022-05-30 20:58:43 68KB 工程技术 论文
1
请引用这些论文: [1] S. Mukherjee和R. Guddeti,“使用加速框架在立体图像中基于深度的选择性模糊”,Springer-Verlag杂志“ 3D研究”,第1卷。 5,没有。 2014 年 3 月。 [2] S. Mukherjee 和 R. Guddeti,“基于立体视觉的稀疏视差估计的视差计算混合算法”,IEEE 第 10 届信号处理和通信国际会议 (SPCOM),2014 年 7 月。 我的算法采用了一种快速的混合方法(基于块和区域的混合)从校正后的立体图像对进行立体视差估计。 对于来自 Middlebury 立体视觉数据集的三个标准基准图像(Tsukuba、Sawtooth 和 Venus),其错误率分别低至 7.8%、5.3% 和 4.7%,尺寸分别为 384x288、434x380 和 434x383 像素。 该算法在具有 Intel i7-2600 CPU
2022-05-25 14:48:46 368KB matlab
1
用蚁群算法进行函数优化时,存在收敛速度慢且易于陷入局部最优解的问题。针对这一现状,提出了一种微粒群和蚂蚁算法相结合的混合连续优化算法,该算法引入微粒群优化操作进行全局搜索牵引,采用网格法进行细密度的蚂蚁局部搜索,从而能很好地应用于求解连续对象优化问题。对若干典型复杂连续函数的实验测试结果表明,该混合算法跳出局部最优解的能力较强,能较快地收敛到全局最优解,并能适于高维空间的优化问题。与最新的有关研究成果相比,该算法不仅寻优精度高,而且收敛速度大幅提高,效果十分令人满意。
1
一种基于金鹰优化器和灰狼优化器的混合算法
2022-04-15 18:04:45 1.71MB 算法 matlab
针对标准粒子群算法在优化过程中受初始值影响较大且容易陷入局部极值的缺陷,将鱼群算法中聚群行为的基本思想引入粒子群算法中,据此建立了粒子中心的基本概念,并利用粒子的聚群特性调整粒子的飞行方向与目标位置,从而提出了一种新的混合粒子群算法,旨在改进原粒子群算法的全局收敛能力。为了检验混合粒子群算法的优化特性,采用三种典型的标准函数对五种现行智能算法进行了多方面的测试和比较。实验结果表明,新算法具有良好的搜索精度与速度,有效弥补了标准粒子群算法局部收敛和鱼群算法精度不高的双重缺陷,适用于解决复杂函数优化问题。
1