乳腺肿瘤计算机辅助诊断(CAD)系统在医学检测和诊断中的应用日益重要。为了区分核磁共振图像(MRI)中肿瘤与非肿瘤,利用深度学习和迁移学习方法,设计了一种新型乳腺肿瘤CAD系统:1)对数据集进行不平衡处理和数据增强;2)在MRI数据集上,利用卷积神经网络(CNN)提取CNN特征,并利用相同的支持向量机分类器,计算每层CNN的特征图的分类F1分数,选取分类性能最高的一层作为微调节点,其后维度较低层为连接新网络节点;3)在选取的网络接入节点,连接新设计的两层全连接层组成新的网络,利用迁移学习,对新网络载入权重;4)采用固定微调节点前的网络层不可训练,其余层可训练的方式微调。分别基于深度卷积网络(VGG16)、Inception V3、深度残差网络(ResNet50)构建的CAD系统,性能均高于主流的CAD系统,其中基于VGG16和ResNet50搭建的系统性能突出,且二次迁移可以提高VGG16系统性能。
1
提出了一种融合全局和局部深度特征(GLDFB)的视觉词袋模型。通过视觉词袋模型将深度卷积神经网络提取的多个层次的高层特征进行重组编码并融合,利用支持向量机对融合特征进行分类。充分利用包含场景局部细节信息的卷积层特征和包含场景全局信息的全连接层特征,完成对遥感影像场景的高效表达。通过对两个不同规模的遥感图像场景数据集的实验研究表明,相比现有方法,所提方法在高层特征表达能力和分类精度方面具有显著优势。
2023-11-02 16:02:16 14.8MB 深度卷积 特征融合
1
使用深度卷积网络的语义感知图像压缩 该代码是论文一部分,论文摘要在本页底部提供。 它包括三个部分: 生成感兴趣的多结构区域(MSROI)的代码(使用CNN模型。已提供了预训练的模型) 使用MSROI映射在语义上将图像压缩为JPEG的代码 训练CNN模型的代码(供1使用) 要求: 张量流 脾气暴躁的 大熊猫 Python PIL Python SKimage 有关详细的要求列表,请参阅requirements.txt 推荐: Imagemagick(用于更快的图像操作) VQMT(用于获取指标以比较图像) 目录 如何使用此代码? 生成地图 ``` python generate_map.py ``` 在“输出”目录中生成地图和覆盖文件。 如果收到此错误 ``` InvalidArgumentError (see above for traceb
1
针对以人为中心的井下视频监控模式存在持续时间受限、多场景同时监视困难、人工监视结果处理不及时等问题,提出了基于深度卷积神经网络的井下人员目标检测方法。首先将输入图片缩放为固定尺寸,通过深度卷积神经网络操作后形成特征图;然后,通过区域建议网络在特征图上形成建议区域,并将建议区域池化为统一大小,送入全连接层进行运算;最后,根据概率分数高低选择最好的建议区域,自动生成需要的目标检测框。测试结果表明,该方法可以成功检测出矿井工作人员的头部目标,准确率达到87.6%。
1
语音质量评价matlab代码深度转换 深度卷积神经网络用于音乐源分离 该存储库包含用于数据生成,预处理和特征计算的类,可用于训练具有不适合内存的大型数据集的神经网络。 此外,您可以从中找到用于查询乐器声音样本的类。 在“示例”文件夹中,您可以找到上述类的使用案例,以了解音乐源分离的情况。 我们提供用于特征计算(STFT)和用于训练卷积神经网络以进行音乐源分离的代码:使用数据集iKala数据集唱歌语音源分离,使用DSD100数据集进行语音,低音,鼓分离,用于大鼓,单簧管,萨克斯风和小提琴的编码。 当原始分数可用时,后面的例子是使用RWC乐器声音数据库中的乐器样本训练神经网络的好例子。 在“评估”文件夹中,您可以找到基于Matlab的代码来评估分离质量。 为了训练神经网络,我们使用和。 我们使用已经训练有素的模型来完成不同任务,提供分离代码。 在examples / dsd100 / separate_dsd.py中将音乐分离为人声,贝斯,鼓和伴奏: python separate_dsd.py -i -o -m <path_to_model
2023-04-12 18:06:06 211KB 系统开源
1
介绍 基于深度卷积神经网络实现的人脸表情识别系统,系统程序由Keras, OpenCv, PyQt5的库实现,训练测试集采用fer2013表情库。 主要功能 (1)可以通过从本地图片导入系统,或者直接相机进行拍摄等方法对图片和视频进行处理并分析。 (2)可以切换模型对图片进行处理。 实现原理 (1)表情库的建立 目前,研究中比较常用的表情库主要有:美国CMU机器人研究所和心理学系共同建立的Cohn-Kanade AU-Coded Facial Expression Image Database(简称CKACFEID)人脸表情数据库;fer2013人脸数据集等等,这里我们的系统采用fer2013人脸数据集。 (2)表情识别: ①图像获取:通过摄像头等图像捕捉工具获取静态图像或动态图像序列。 ②图像预处理:图像的大小和灰度的归一化,头部姿态的矫正,图像分割等。(改善图像质量,消除噪声,统一图像灰度值及尺寸,为后序特征提取和分类 识别打好基础) (3)特征提取:将点阵转化成更高级别图像表述—如形状、运动、颜色、纹理、空间结构等,?在尽可能保证稳定性和识别率的前提下,对庞大的图像数据进 行降维
2023-04-11 16:16:23 12.01MB 软件/插件 数据集 keras opencv
1
本代码在keras开源代码框架下,基于深度卷积神经网络,实现猫的图片识别。
2023-04-08 18:51:50 9KB Python Deep convolution
1
针对红外船只图像较模糊导致的识别率低、识别速度慢等问题,提出了一种基于深度卷积神经网络(CNN)的检测算法。首先采用标记分水岭分割算法提取红外船只图像中的连通区域,并对原图相应的目标位置进行标记和归一化处理,提取候选区域。采用改进的AlexNet(一种深度CNN模型)进行船只目标识别,将提取的候选区域送入改进的AlexNet进行特征提取和预测,得到最终检测结果。分水岭方法可大大减少候选区域检测时间,以及减少深度CNN识别时间。利用实验室自制的红外成像系统获取近千张红外船只图像数据,并对其平移缩放形成的数据集进行仿真实验。结果表明,标记分水岭与深度CNN的结合,可有效识别船只目标,所提方法具有良好的性能,能够更加快速准确地识别红外船只目标。
2023-04-08 13:02:37 7.45MB 测量 红外船只 标记分水 卷积神经
1
针对现有的SIFT特征在车辆细粒度分类中存在的分类精度低的问题,提出了一种融合FV-SIFT特征和深度卷积特征的车辆图像细粒度分类算法。首先采用SIFT算法与Fisher Vector算法相结合的方式提取车辆图像的FV-SIFT特征,然后采用VGG-16卷积神经网络提取车辆图像的深度卷积特征,最后将FV-SIFT特征与深度卷积特征进行线性融合并采用支持向量机对融合后的车辆特征进行分类。实验结果表明,该方法的分类准确率达到82.3%,较FV-SIFT算法在分类准确率上提高了15.4%。
1
本文对2019年10月更新的CNN综述文章《A Survey of the Recent Architectures of Deep Convolutional Neural Networks》进行了翻译,对大家全面了解CNN架构进展有所帮助。
2023-01-04 12:27:47 2.02MB 深度学习 卷积神经网络 CNN 综述
1