总结了1935年以来国内外孔直线度误差检测方法,对近年发展起来的孔直线度误差的检测方法进行了归类总结,分析了孔直线度误差检测方法的研究趋势;重点介绍了以孔轴线为对象的检测方法及以孔母线为对象的检测方法;通过对现有方案的研究及发展趋势的分析,提出了孔直线度误差检测研究的课题方向。 【孔直线度误差检测方法】是机械制造领域中一项重要的技术,主要目的是确保孔加工的质量。孔直线度是指孔轴线相对于理想直线的偏差,它直接影响到零件的精度和性能,特别是在航空航天、军事装备以及精密机械等领域。 自1935年以来,国内外的科研人员开发出了多种孔直线度误差的检测方法。早期的传统方法主要包括接触式检测,如塞规检测法、游标卡尺两端壁厚检测法和杠杆法。塞规检测法依赖于孔零件的倾斜和量规的通过性来判断直线度误差,但无法提供具体数值。游标卡尺两端壁厚检测法通过比较两端壁厚差异间接评估直线度,但无法反映孔中部状况,存在较大误差。杠杆法则通过测头在孔内的移动和杠杆原理获取形状波动,虽可得误差值,但仅限于特定方向。 光学检测方法是孔直线度误差检测的重要进展,始于20世纪30年代。例如,1935年提出的火炮管直线度光学检测,利用光斑位置变化来反映直线度误差。后续的 Pont、Getler、Keller、Dudzik 和 Walker 等人的研究进一步发展了光学检测技术,通过光学成像和透镜系统,将直线度的变化以直观的方式呈现,提高了检测的精度和效率。 近年来,随着科技的发展,孔直线度误差检测方法不断演进,包括基于激光干涉仪、白光干涉仪、计算机视觉等先进技术的检测手段。这些方法不仅能够提供高精度的直线度误差数据,还能实现自动化、实时监测,大大提升了检测的准确性和效率。 在孔轴线直线度误差检测方法的研究趋势方面,未来可能会更加注重集成化、智能化和非接触式的检测技术,以适应更高精度和复杂工况的需求。此外,随着计算机技术的快速发展,数据分析和处理能力的增强,预计会有更多先进的算法应用于孔直线度误差的计算和补偿。 孔直线度误差检测方法的研究是一个持续发展的领域,它涉及到机械工程、光学、传感器技术和信号处理等多个学科。通过入研究现有方法并探索新的检测技术,可以进一步提高孔加工的精度,推动相关行业的技术进步。
2024-12-19 20:38:01 266KB 检测方法 研究趋势
1
简 RSG-350PA mtk7621 128m v1.2 4.0电信系统 已改uboot
2024-12-01 20:18:57 16MB mtk7621
1
股票历史数据30年证成指1991-2023年8月(日K线),回测,跑策略等。 其它股票历史数据包括,全市场5000多支股票上市以来至今的分钟线,小时线,日线,最早从1990年开始,另外tick级数据,从2014年8月至今,不过全部放一起得10个T,而且跑策略的意义也不大,不如用分钟级数据,数据使用问题请私信留言,后续视情况上传其它类型,请保持关注,用python跑,快的不要不要的
2024-11-26 08:50:42 449KB 股票历史数据
1
题库小程序,微信扫码打开 安全方向AC AF aTrust EDR SIP 云计算方向aDesk HCI 应用交付方向AD
2024-10-24 13:50:20 460KB
1
### 国电智DCS组态文件修改详解 #### 一、增加点 在进行国电智DCS系统的组态文件修改时,增加新点是一项基础且重要的操作。以下为具体步骤: 1. **启动工程管理器**:首先在工程师站运行“工程管理器”软件。 2. **打开工程文件**:点击“打开工程”按钮,并选择位于D盘工程文件夹下的工程文件“xxx.pcs”,然后点击“切换为活动工程”按钮。 3. **站管理**:点击左侧窗口下方的“站管理”按钮,展开到对应的控制站,本例中以DROP1为例。 4. **新建点**: - 在右侧窗口选择“点记录”选项卡,点击“新建”按钮。 - 在弹出的对话框中输入新的点名称,并进入点记录编辑界面。 - 选择合适的点类型,并填写工程单位。 - 在“硬件信息”选项卡中,将该点分配到具体的I/O卡件上,并指定通道及信号类型。 - 修改量程上下限。若信号类型为“4~20mA”,则点击“计算信号系数(H->H)”按钮来确保信号与量程之间的准确转换。 5. **设置报警**:如果需要设置报警功能,则选择“报警”选项卡,在高限或低限报警处勾选,并设定报警阈值。 6. **历史数据配置**:选择“历史及其他”选项卡,根据实际需求设置历史死区,通常建议设为0.1%。 7. **其他配置**:根据现场需求调整其他设置。 8. **新建确认**:完成所有配置后,点击“新建”按钮进行保存。 完成上述步骤后,还需要进一步配置才能使新增的点生效。 1. **数据库下载**:再次展开到控制站DROP1,选择“数据库”选项卡,点击“下载”按钮。 2. **标记卡件并配置点组**:在“模块”选项卡中,使用鼠标右键选择“标记全部卡件”,之后点击“配置点组”按钮。 3. **下载点组配置**:继续在左侧窗口展开到域,在右侧窗口选择除DPU外的其他站,点击“下载点组配置”。 4. **历史站配置**:在含有历史站功能的站点下,选择“历史站配置”选项卡,点击“生成”后再点击“下载”。 #### 二、修改SAMA图 1. **打开SAMA图**:在“工程管理器”的左侧窗口中展开到控制站DROP1,选择“SAMA图”选项卡,双击需要修改的SAMA图,进入组态软件进行修改。 2. **保存修改**:完成SAMA图的修改后,进行保存操作。 3. **配置SAMA图**:在工具栏中依次点击“配置SAMA”、“编译SAMA、更新数据库”、“转换SAMA”。配置过程中会出现智能排序对话框和页面配置对话框,均点击“确定”完成操作。 4. **编译SAMA图**:在编译过程中,系统会提示是否更新数据库,同样点击“是”。若编译失败,系统会自动提示错误信息,需要返回SAMA图进行修正,直到编译成功。 5. **下载SAMA图**:返回工程管理器,选择“SAMA图”选项卡,并对修改后的SAMA图进行下载操作。在下载过程中会有确认对话框出现,点击“确定”即可。 #### 三、修改过程画面 1. **打开过程画面**:在“工程管理器”的左侧窗口中展开到工程师站,选择“过程画面”选项卡,双击需要修改的过程画面,自动打开GB过程画面编辑软件进行修改。 2. **保存修改**:完成修改后,保存过程画面。 3. **下载过程画面**:返回工程管理器,选择“过程画面”选项卡,点击“刷新列表”按钮,确认修改后的过程画面已被正确识别,然后进行下载操作。 #### 四、修改点 对于已存在的点进行修改的操作如下: 1. **查找并复制点名**:在工程师站运行“工程管理器”,查找需要修改的点名,并进行复制。 2. **查询点信息**:在工程管理器的开始菜单目录下,点击“点记录编辑”,在查询点名位置粘贴点名并点击查询按钮。 3. **修改基本信息**:在基本信息中修改点名或工程单位等信息。 4. **修改硬件信息**:选择“硬件信息”选项卡,对量程上下限、信号类型等进行修改。若信号类型为“4~20mA”,还需点击“计算信号系数(H->H)”按钮。 5. **保存更改**:完成所有修改后,保存更改。 以上便是国电智DCS组态文件修改中关于增加点、修改SAMA图以及修改过程画面的具体步骤。通过对这些关键步骤的了解与掌握,可以帮助技术人员更高效地进行DCS系统的维护与优化工作。
2024-09-21 23:57:16 1013KB 编程语言
1
### 国电智DCS编程软件NT+软件快速入门 #### 一、组态前的准备工作 在开始使用国电智DCS编程软件NT+进行组态之前,需要做好一系列准备工作,确保后续的工作流程顺利进行。 ##### 1.1 划分网络,域和站点 **网络划分:** 首先需要根据现场实际情况合理规划网络结构,明确各个设备之间的连接方式以及数据传输路径。通常情况下,一个DCS系统会涉及多个子网,如控制网、监控网等,不同子网之间应通过交换机或路由器进行隔离。 **域划分:** 域是NT+软件中的基本组织单元,它将相关的硬件资源、软件资源和用户权限等信息进行逻辑上的组织。合理的域划分有助于提高系统的可维护性和安全性。 **站点划分:** 站点是指系统中具体的硬件设备,如工程师站、操作员站、历史服务器等。每个站点都需要分配到相应的域中,并且需要为其指定IP地址等网络参数。 ##### 1.2 整理硬件IO点清单 在进行硬件配置之前,需要整理出一份详细的硬件IO点清单,包括所有输入输出点的信息。这一步对于后续的硬件配置至关重要,因为它直接关系到硬件是否能够正确识别和配置这些点。 ##### 1.3 安装相关软件 根据项目需求安装必要的软件环境,包括但不限于操作系统、数据库管理系统、DCS编程软件NT+等。确保所有软件版本兼容,避免出现版本冲突导致的问题。 #### 二、工程组态步骤 ##### 2.1 创建工程 在NT+软件中创建一个新的工程,为该工程命名并选择合适的存储路径。创建工程时还可以指定一些基本参数,如工程的语言环境、时间格式等。 ##### 2.2 创建域 根据之前的网络划分方案,在新创建的工程中创建对应的域。每个域都具有独立的用户权限管理和资源管理功能。 ##### 2.3 创建站 在相应的域中创建站点,如工程师站、操作员站等。创建站点时需要指定站点类型、IP地址等基本信息。 ##### 2.4 初始化并启动站 对每个站点进行初始化操作,确保其能够正常工作。启动站点后,可以通过登录操作员界面等方式检查站点的状态。 ##### 2.5 安全设置及下载 为了保证系统的安全运行,需要对各个站点进行安全设置,包括设置访问权限、密码保护等。完成设置后,需要将这些配置信息下载到对应的站点上。 ##### 2.6 站点配置与安全配置下载 除了基本的安全设置之外,还需要对各个站点进行详细的配置,如网络配置、硬件配置等。配置完成后同样需要下载到站点上。 ##### 2.7 组态卡件 对现场使用的各种卡件进行组态,包括模拟量输入输出卡、开关量输入输出卡等。通过组态可以实现对现场设备的有效监控和控制。 ##### 2.8 I/O测点定义 对现场设备的I/O测点进行定义,这是实现控制系统功能的基础。 ###### 2.8.1 在工程管理器中直接定义 可以在工程管理器中手动添加每一个测点,这种方式适用于测点数量较少的情况。 ###### 2.8.2 利用数据库批处理导入各点 如果测点数量较多,则推荐使用数据库批处理的方式批量导入测点信息,这样可以极大地提高工作效率。 ##### 2.9 控制算法和操作画面综合组态 控制算法和操作画面是DCS系统的核心部分,通过综合组态可以实现对现场设备的精确控制。 ###### 2.9.1 模拟量综合组态 模拟量综合组态主要针对模拟信号的采集和处理,包括PID控制算法等。通过合理的算法设计,可以实现对温度、压力等物理量的精确控制。 ###### 2.9.2 开关量综合组态 开关量综合组态则主要关注开关信号的处理,如联锁逻辑、顺序控制等。这些控制逻辑对于保证生产过程的安全稳定至关重要。 ##### 2.10 历史站的配置 历史站主要用于存储系统的运行数据,以便于后期的数据分析和故障诊断。配置历史站时需要注意以下几点: 1. **数据存储策略:** 根据实际需求设置合适的数据存储间隔和存储周期。 2. **报警记录:** 记录关键报警信息,便于事后追踪问题原因。 3. **数据备份:** 定期备份历史数据,防止数据丢失。 通过以上步骤可以完成国电智DCS编程软件NT+的基本组态工作。在整个过程中,合理的规划和细致的操作是非常重要的,只有这样才能确保整个DCS系统稳定可靠地运行。希望这份入门指南能够帮助您更好地理解和掌握NT+软件的使用方法。
2024-09-21 23:50:21 2.7MB 编程语言
1
北上广数据分析,适合初学者及大学生课设答辩 首先数据清洗 然后绘制房屋朝向柱状图、各地区平均单价前三横向柱状图、北上广户型饼图、北上广各地区房源数量折线图,词云图。
2024-09-13 11:02:08 1.69MB 数据分析 jupyter
1
IEC 61850 报文解析 IEC 61850 是一种智能电网通信标准,用于变电站自动化和 industrial automation。该标准定义了一种基于客户端-服务器架构的通信协议,用于智能电子设备(IED)之间的数据交换。 1. 相关术语简介 IED(Intelligent Electronic Device):智能电子设备,指具有自动化控制和数据交换功能的电子设备。 ICD(Intelligent Configuration Description):智能电子设备配置描述,指用于描述 IED 的配置信息的文件。 SCD(Substation Configuration Description):变电站配置描述,指用于描述变电站的配置信息的文件。 CID(Configured ICD):配置的 ICD,指从 SCD 文件中导出的与各自 IED 相关的内容形成的文件。 SCL(Substation Configuration Language):变电站配置语言,指用于描述变电站的配置信息的语言。 AccessPoint:访问点,指 IED 上的网络接口。 PHD(Physical Device):物理设备,指实际的电子设备。 LD(Logical Device):逻辑设备,指 IED 的逻辑表示。 LN(Logical Node):逻辑节点,指 IED 的逻辑节点。 FC(Functional Constraint):功能约束,指 IED 的功能约束。 FCD(Functional Constraint Data):功能约束数据,指 IED 的功能约束数据。 FCDA(Functional Constraint Data Attribute):功能约束数据属性,指 IED 的功能约束数据属性。 GOCB(GOOSE Control Block):GOOSE 控制块,指 IEC 61850 中的 GOOSE 控制块。 LLN0(Logical Node 0):逻辑节点 0,指 IED 的逻辑节点 0。 SGCB(Set Group Control Block):定值控制块,指 IEC 61850 中的定值控制块。 DO(Data Object):数据对象,指 IED 的数据对象。 DA(Data Attribute):数据属性,指 IED 的数据属性。 2. ICD/CID 模型文件简介 ICD/CID 模型文件是一种树状层次结构,包括 PHD、LD、LN、DO 和 DA 五个层次。其中,PHD 是物理设备,LD 是逻辑设备,LN 是逻辑节点,DO 是数据对象,DA 是数据属性。 2.1 模型文件结构 ICD/CID 模型文件结构如图 2-1-1 所示: PHD(物理设备)→LD(逻辑设备)→LN(逻辑节点)→DO(数据对象)→DA(数据属性) 2.2 ICD 模型文件内容与数据库信号的对应 ICD 模型文件内容与数据库信号的对应关系可以分为两类:遥测信号和遥信信号。 2.2.1 遥测信号 遥测信号是指 IED 的测量信号,例如电压、电流等。在 ICD 模型文件中,遥测信号的内容可以分为两部分:数据集定义和实例化后的遥测数据。 数据集定义是指 ICD 模型文件中 LD 下面的数据集定义,如图 2-2-1-2 所示: 图 2-2-1-2 icd 遥测数据集定义 实例化后的遥测数据是指 ICD 模型文件中 LN 下面的实例化后的遥测数据,如图 2-2-1-3 所示: 图 2-2-1-3 遥测数据实例 2.2.2 遥信信号 遥信信号是指 IED 的控制信号,例如开关信号、告警信号等。在 ICD 模型文件中,遥信信号的内容可以分为两部分:数据集定义和实例化后的遥信数据。 数据集定义是指 ICD 模型文件中 LD 下面的数据集定义,如图 2-2-2-2 所示: 图 2-2-2-2 icd 遥信数据集定义 实例化后的遥信数据是指 ICD 模型文件中 LN 下面的实例化后的遥信数据,如图 2-2-2-3 所示: 图 2-2-2-3 遥信数据实例 通过本文档,我们可以了解 IEC 61850 报文解析的基本概念和模型文件结构,并且了解 ICD 模型文件内容与数据库信号的对应关系。这将有助于我们更好地理解和应用 IEC 61850 报文解析技术。
2024-07-15 14:55:32 1.86MB IEC61850
1
块体金属玻璃热压印中结构宽比和晶化程度控制模型,刘婧蓓,林杰,本文利用La62Al14Cu12Ni12块体金属玻璃的热力学特征参数、拟合的过冷液相区粘度以及拟合的形核速率、生长速率、晶化体积分数与时间的�
2024-07-15 11:02:54 1.32MB 首发论文
1
我们提出了与部非弹性散射中的射流相关的孤立即时光子产生的完整的次要顺序计算。 该计算涉及直接,已解决和支离破碎的贡献。 结果表明,通常在质子虚拟光子框架(CM ∗)中或在实验室框架中(在某些实验中进行)定义横向矩并不等效,并且会导致有关摄动方法的重要差异。 实际上,在某些情况下,使用后一帧可能会排除对重要分解分量的次要前导校正的计算。 与最新的ZEUS数据进行了比较,在摄动稳定的区域发现了很好的一致性。
2024-07-05 12:13:57 487KB Open Access
1