毕业设计基于单片机的室内有害气体检测系统源码+论文,含有代码注释,小白都可以看懂,个人98分毕业设计。毕业设计、期末大作业、课程设计、高分必看,下载下来,简单部署,就可以使用。 本次所设计有害气体检测报警系统概述 有害气体检测报警系统分为四个子系统:主控制系统,室内气体检测系统,信息交互可视化系统与信息处理识别反馈系统。有害气体检测报警系统如图2-1所示,主控系统为核心,通过控制室内检测系统采集数据之后进行数据回传。回传的数据经过信息处理识别反馈系统及预处理后进行可视化展现与指标判断,并且最终根据所得数据判断是否需要预警,完成规避风险的功能。 有害气体检测未来研究趋势: 室内有害气体检测在现代社会中变得愈发重要,关乎人们的健康和居住环境的质量。随着城市化的加速和室内空间的日益密集,有害气体如CO、CO2、甲醛等的排放成为一项不可忽视的问题。以下通过了解国内外在这一领域的最新研究,为基于单片机的室内有害气体检测报警系统的设计提供依据。 (1)数据处理与算法: 国内的研究人员致力于改进数据处理算法,以更有效地处理大量的监测数据。智能算法的引入,如机器学习和人工智能,有助于提高对室内空气质
2024-11-05 15:42:22 73.67MB 源码 毕业设计
1
基于可调谐半导体激光吸收光谱(TDLAS)技术的气体检测系统,因气体吸收产生的二次谐 波信号携带浓度信息,通过浓度反演可实现浓度信息的提取。本文简要介绍了TDLAS气体检测系 统,对Matlab下完成的曲线拟合和反演算法仿真以及FPGA内部设计实现的反演算法进行了详细 描述,并在一氧化碳检测系统下利用多组待测浓度完成了反演算法的验证。 可调谐半导体激光吸收光谱(TDLAS)是一种先进的气体检测技术,它利用特定波长的激光穿透气体样本,当激光与气体分子相互作用时,会发生吸收现象,特别是气体分子对激光的吸收强度与气体的浓度有直接关系。TDLAS技术能够精确地测量气体的浓度,尤其适用于监测大气、工业生产过程中的有害或有价值气体,如一氧化碳等。 在TDLAS气体检测系统中,核心步骤是浓度反演,即从测量到的吸收信号(通常表现为二次谐波信号)中提取出气体的浓度信息。这一过程通常涉及到复杂的数学模型和算法。在MATLAB环境下,可以进行曲线拟合和反演算法的仿真。MATLAB作为强大的数学计算和仿真工具,提供了丰富的函数库和优化算法,能有效处理非线性拟合问题,构建吸收光谱与气体浓度之间的关系模型。 具体来说,首先需要对测量得到的吸收光谱数据进行预处理,包括噪声过滤、基线校正等,然后利用MATLAB的曲线拟合工具,如非线性最小二乘法,找到最佳拟合曲线。接着,通过反演算法,如Levenberg-Marquardt法或直接搜索法,反推出气体浓度。在反演过程中,可能需要迭代求解,以确保浓度估计的准确性。 文章中提到了FPGA(Field-Programmable Gate Array)内部设计实现的反演算法。FPGA是一种可编程的硬件平台,它能快速并行执行计算任务,特别适合实时和高效率的系统。将反演算法部署到FPGA上,可以大大提高系统的响应速度和检测效率,同时减小对外部处理器的依赖。 实验部分,研究者在一氧化碳检测系统中,利用多组不同浓度的一氧化碳样本对反演算法进行了验证。结果显示,浓度反演的吻合度达到了99.9%,这表明反演算法非常准确,能满足实际应用的需求。这种基于MATLAB的前期数据分析和误差控制方法不仅适用于TDLAS系统,还可以推广到其他领域的设备研制和系统综合测试。 总结而言,TDLAS气体检测技术结合MATLAB和FPGA的优势,实现了高效、精确的气体浓度测量。MATLAB提供了便捷的数据处理和算法仿真环境,而FPGA则确保了实时的反演计算能力。这种技术对于环境保护、安全生产、科学研究等领域具有重要的实用价值。
2024-10-08 20:08:03 1.62MB matlab TDLAS 气体检测
1
西门子1500PLC(SIMATIC S7-1500)是一种先进的工业自动化控制器,广泛应用于各种复杂的工业环境中,包括气体输灰系统。在这个系统中,PLC负责控制气体输送设备,确保灰烬高效、安全地从一个位置传输到另一个位置。这个自动程序采用梯形图(Ladder Diagram)编程方式,这是一种直观且常见的PLC编程语言,易于理解和调试。 博途(TIA) Portal V17是西门子提供的集成自动化软件,它集成了编程、工程组态、诊断和维护等多种功能。对于1500PLC的气体输灰程序,V17及以上版本的博途提供了全面的支持,允许工程师进行高效编程和优化。 气体输灰自动程序的核心在于逻辑控制和顺序执行。在程序中,可能包含以下关键组成部分: 1. **初始化(INIT)阶段**:程序开始时执行,用于设置初始状态,如打开/关闭阀门、启动/停止风机等。 2. **主循环(Main)**:程序的主要执行部分,持续监控系统状态,处理输入信号,更新输出信号。例如,根据仓泵(Blower Pumps)的状态和灰斗的满空情况来决定何时启动输灰过程。 3. **仓泵控制**:每个仓泵可能对应一个独立的程序块,负责管理泵的启动、运行、停止以及故障检测。这些程序块可以直接调用,只需输入相应的输入和输出点位。 4. **故障处理(FAULT HANDLING)**:当检测到系统异常,如压力过高、温度异常或设备故障时,程序会触发相应的错误处理流程,确保系统的安全。 5. **通信(COMMUNICATION)**:1500PLC可以通过PROFINET、Ethernet/IP等网络协议与其他设备通信,监控远程传感器和执行器的状态,实现远程控制。 6. **数据记录(DATA LOGGING)**:程序可能包含数据记录功能,用于记录气体输灰过程中的关键参数,如输灰时间、气体流量等,便于分析和优化运行效率。 7. **用户界面(HMI)**:通过博途软件,可以创建与PLC通信的人机界面,实时显示系统状态,提供操作员交互界面,方便监控和控制。 由于压缩包中的文件名称“PEData.idx”和“PEData.plf”不直接对应具体程序源代码,它们可能是项目工程的索引或备份文件,通常不直接用于编程,而是与TIA Portal软件配合使用,帮助恢复或加载项目。 西门子1500PLC的气体输灰自动程序利用博途软件进行开发,通过精心设计的逻辑控制实现气体灰烬的高效运输,同时具备故障保护和数据记录功能,确保了系统的可靠性和可维护性。对于熟悉博途和PLC编程的工程师,这份程序是宝贵的参考资料,可以根据实际需求进行修改和扩展。
2024-09-27 08:26:26 23.82MB 1500PLC 程序设计
1
热式气体质量流量计是基于热扩散原理而设计的,该仪表采用恒温差法对气体进行准确测量。具有体积小、数字化程度高、安装方便,测量准确等优点。该文档介绍热式气体质量流量计的工作原理和内部计算公式,以及使用说明,安装说明,注意事项等。 热式气体质量流量计是一种利用热扩散原理进行气体流量测量的精密仪表,其核心在于恒温差法。这种仪表的特点包括体积小巧、数字化程度高、安装便捷以及测量精度高等。其内部构造包含两个高精度铂电阻温度传感器,一个用于测量介质温度T1,另一个则被加热至高于介质温度T2,作为速度传感器。当气体流过时,会带走T2的热量,导致T2的温度下降。为了维持ΔT(T2-T1)的恒定,需要增加对T2的加热电流,气体流速与所需的额外热量之间存在固定的比例关系,这就是恒温差原理。 流量计的工作基于以下公式: \[ g = \frac{87.1}{Q \cdot KV \cdot \Delta T} \] 其中: - \( g \) 表示流体的比重,与密度相关。 - \( V \) 代表流速。 - \( K \) 是平衡系数,与流量计的特性有关。 - \( Q \) 是加热功率。 - \( \Delta T \) 是两个传感器之间的温差。 使用热式气体质量流量计时,用户需要注意以下几点: 1. 安全操作:确保阅读并理解使用手册,尤其是对于危险、注意和禁止的标识。在爆炸环境中,必须选择防爆型仪表,并确认其防爆等级符合现场要求。严禁带电操作,尤其是在可能存在爆炸风险的场所。 2. 电源与环境:在安装前确认供电类型,如交流220V或直流+24V,同时确保仪表的工作环境温度和压力不超过其标称值。过高温度或压力可能导致仪表损坏或安全风险。 3. 特殊介质:对于某些特殊气体,如危险气体,需选择适合的产品类型,并确保安全操作。在可能存在健康风险的条件下,如测量煤气或氯气,应避免在线安装和维护。 4. 故障处理:如果怀疑仪表存在问题,应联系专业技术人员进行检查,不应自行操作,以防发生意外。 热式气体质量流量计是通过监控温度变化来精确测量气体流量的设备,其高效和精确的特性使其广泛应用于工业和科研领域。使用时必须遵循安全规程,以确保人员安全和仪表的正常运行。
2024-09-04 16:11:29 2.48MB
1
基于无线传感网络的气体泄漏源定位在环境监测、安全防护和污染控制等多个领域具有重要意义。提出一种基于分布式最小均方差(D-MMSE)序贯估计的气体泄漏源定位算法。其通过构建一个包含节点之间信息增益与网络能量消耗两方面参数的信息融合目标函数,并对目标函数寻优实现路由节点的调度与选择。所选节点在其测量值和前节点估计值并通过与邻居节点信息交互的基础上完成气体泄漏源位置参数估计量及其方差的更新与传递。为了降低网络能耗,邻居节点集的选择半径随估计量方差做动态调整。仿真分析表明所提算法对比单节点序贯估计定位算法在一定的
2024-05-06 13:02:20 1.27MB 工程技术 论文
1
通过深度学习在光谱学中检索气体浓度 田林波,孙佳晨,张军,夏金宝,张志峰,Alexandre A. Kolomenskii,汉斯·舒斯勒,张ler 该存储库提供补充材料,包括: 代码 load data.py-将数据从xlxs文件加载到pkl。 I / O例程 模型Implementation.py-在Keras中实现的深度神经网络(1D-CNN&DMLP)。 Pre-training.py-预训练模型的说明 transfer-learning.py-为预训练的模型实施转移学习的说明。 数据集 目前,我们尚未决定如何提升大容量数据集的水平。与编辑协商后将确认。
2024-05-06 12:07:36 427KB Python
1
1、STM32F103通过设置GPIO引脚,检测MQ-2气体传感器数值。 2、代码使用KEIL开发,当前在STM32F103C8T6运行,如果是STM32F103其他型号芯片,依然适用,请自行更改KEIL芯片型号以及FLASH容量即可。软件下载时,请注意keil选择项是jlink还是stlink. 3、技术支持:wulianjishu666
2024-04-09 16:15:37 4.56MB stm32
1
抽象的 人们通常会在这里度过很多美好的时光。 人类一直在不懈努力,力求做到舒适与简单相结合。 这就是我们最终以“智能家居”概念结束的原因。 在这个项目中,我们实施基于物联网的家庭自动化和安全管理。 该框架的特点是方便但又安全。 该系统使用移动通信设备,该设备可使用低功耗访问智能手机。 它是低浇铸的,但安全可靠。 UNO Arduino微控制器或MEGA Arduino微控制器是中央处理单元。 它处理了所有建议的系统。 在该项目中,气体传感器,火灾传感器,雨水传感器,温度传感器,IP摄像机,红外灯,运动传感器,水传感器,超声波传感器,LDR,障碍传感器和PIR传感器以及安全系统均用于安全目的。 根据微控制器接收到的传感器信号,传感器将通过GSM模块将消息发送到移动台,从而向业主警告在家中存在未授权用户。 关键字词 UNO Arduino,Mega Arduino,气体传感器,火灾传感器,雨水
2024-04-07 23:21:42 17KB
1
我们调查净质子波动作为强子共振气体(HRG)模型中重离子碰撞中测量的重要可观察物。 特别强调了在热和化学平衡的HRG方法中并非固有的先验效应。 特别是,我们指出了考虑化学冻结后共振的连续再生和衰减的重要性,这会导致核子同工旋的随机化,从而导致额外的流感。
2024-02-29 21:30:49 609KB Open Access
1
根据强子共振气体(HRG)模型计算出不同颗粒比K /π,K / p和p /π时的动态净电荷波动(νdyn),并将其与sNN = 7.7–时的STAR中心Au + Au碰撞进行比较 在sNN = 6.3-17.3 GeV时发生200 GeV和NA49中心Pb + Pb碰撞。 将三个带电粒子比率(K /π,K / p和p /π)确定为相反电荷的总和平均值和相同电荷的平均值。 我们发现,HRG计算与实验测量之间存在极好的一致性,尤其是从STAR束能量扫描(BES)程序获得的结果,而HRG方法并未复制NA49实验中较低质子加速器(SPS)能量的奇怪粒子。 我们得出的结论是,利用的HRG版本似乎考虑了各种类型的相关性,包括通过重共振产生的强相互作用及其衰减,尤其是在BES能量下。
2024-02-29 21:17:57 1.41MB Open Access
1