excel统计分析-S-W正态性检验
2025-12-12 10:44:36 25KB excel 统计分析
1
执行Van der Waerden版本的非参数测试(正常分数测试) 以荷兰数学家 Bartel Leendert van der Waerden 命名,Van der Waerden 检验是 k 个人口分布函数相等的统计检验。 Van Der Waerden 检验将等级转换为标准正态分布的分位数。 这些被称为正常分数,测试是根据这些正常分数计算的。 标准方差分析假设误差(即残差)是正态分布的。 如果此正态性假设无效,另一种方法是使用非参数检验。 Van Der Waerden 检验的优势在于它在实际上满足正态性假设时提供了标准 ANOVA 分析的高效率,但在不满足正态性假设时也提供了非参数检验的稳健性。 此函数计算 5 个测试的正常分数: Levene、Mann-Whitney-Wilcoxon 和 Wilcoxon 检验,当有 2 组时; Kruskal-Wallis 和 Friedm
2025-12-11 15:12:16 4KB matlab
1
在数据分析和统计学中,正态性检验是一个重要的步骤,它用于判断一组数据是否符合正态分布。正态分布,也称为高斯分布或钟形曲线,是许多自然现象的标准模型,因此在科学、工程和经济学等领域广泛应用。D'Agostino-Pearson的K2检验就是一种常用的方法,用于评估数据向量的正态性。 D'Agostino-Pearson的K2检验基于数据的偏度和峰度。偏度是衡量数据分布对称性的指标,若偏度为0,表示数据分布是对称的;峰度则反映数据分布的尖峭程度,与正态分布相比,峰度大于3表示数据更尖峭,小于3表示更平坦。K2检验通过计算这两个统计量的标准化版本,并将结果组合成一个统计量,这个统计量在大样本下近似服从卡方分布。 在MATLAB中实现D'Agostino-Pearson的K2检验,通常需要编写函数或脚本来处理。输入参数包括待测试的数据向量和显著性水平,默认的显著性水平为0.05,这意味着我们设定的拒绝原假设的阈值是5%的错误概率。函数首先计算数据的偏度和峰度,然后将这两个统计量转化为卡方分布的观测值。接下来,比较这个观测值与相应自由度下的卡方分布临界值,如果观测值大于临界值,则拒绝原假设,即认为数据不满足正态分布;反之,则接受原假设,认为数据可能来自正态分布。 在DagosPtest.zip这个压缩包中,可能包含了一个MATLAB函数或脚本,实现了上述的D'Agostino-Pearson K2检验过程。用户可以将自己感兴趣的数据向量作为输入,调用这个函数,来得到关于数据正态性的检验结果。这对于数据预处理、假设检验和假设验证等任务来说非常有用。 例如,用户可能有如下代码: ```matlab data = [your_data_vector]; % 替换为实际数据 alpha = 0.05; % 显著性水平 result = DagosPtest(data, alpha); % 调用DagosPtest函数 if result == 1 disp('数据满足正态分布'); else disp('数据不满足正态分布'); end ``` 在这个例子中,`DagosPtest`函数会根据输入数据和显著性水平进行K2检验,并返回一个布尔值,表示数据是否满足正态性。这样的工具对于科研人员和工程师在分析数据时判断其分布特性,进而选择合适的统计方法或模型,是非常有价值的。 D'Agostino-Pearson的K2检验是评估数据正态性的一种统计方法,MATLAB中的实现使得这一过程更加便捷。通过对数据的偏度和峰度进行分析,我们可以更好地理解数据的分布特性,这对于后续的分析和建模工作至关重要。
2025-10-23 20:45:36 3KB matlab
1
高光谱与近红外光谱预处理算法集:涵盖SNV、Autoscales、SG平滑、一阶求导、归一化及移动平均平滑等功能,该算法主要用于处理高光谱和近红外光谱的原始数据,主要包括标准正态变量交化(SNV)、标准化(Autoscales)、SavitZky一Golay卷积平滑法(SG-平滑)、一阶求导(1st derivative)、归一化(normalization)、移动平均平滑(moving average,MA)等光谱预处理方法,替数据就可以直接使用,代码注释都已经写好。 ,高光谱近红外光谱处理; 标准正态变量变换(SNV); 标准化(Autoscales); Savitzky-Golay卷积平滑法(SG-平滑); 一阶求导; 归一化; 移动平均平滑(MA); 代码注释完备。,高光谱近红外数据处理算法:含SNV等预处理方法的优化代码指南
2025-09-16 16:25:03 209KB
1
残差的正态概率分布图,应在一条直线上
2025-05-06 16:20:36 2.14MB Design expert
1
对数正态pdf,对数正态分布,matlab源码
2024-05-30 12:33:49 3KB
本文讨论了带有ARCH(p)误差的部分函数线性模型中参数的估计。 结合功能原理,提出了一种混合估计方法。 获得均值模型中线性参数和ARCH误差模型中参数的估计量的渐近正态性,并建立了斜率函数估计的收敛速度。 此外,进行了一些仿真和实际数据分析,以说明问题,并且表明该方法在有限样本下性能良好。
1
目前,正态逆高斯 (NIG) 分布不包括在统计工具箱中。 这个 m 文件集合为这个工具箱补充了 NIG 分布最重要的功能:随机数、矩、cdf、pdf 和矩拟合参数。 此合集是对有缺陷的旧版本的更新。
2023-02-22 19:10:24 10KB matlab
1
MATLAB用拟合出的代码绘图统计混合模型I 介绍 该存储库包含用于反伽玛正态混合模型的MATLAB代码。 用于超临界流体的混合物模型应用的其他代码(对数正态-中型混合物,概率分类)将很快上载。 如果您使用这些代码进行发布,请引用以下文章之一。 [1] Yoon,TJ,Ha,MY,Lee,WB,&Lee,Y.-W.。 (2017),超临界流体杂志,119,36-43。 [2] Yoon,TJ,Ha,MY,Lee,WB,&Lee,Y.-W.。 (2017),超临界流体杂志,130,364-372。 如有任何疑问,请通过我的电子邮件或researchgate帐户与我联系。 电子邮件: 这些代码的具体信息如下。 invgampdf.m 内容描述 输入:样本值( x ),算术平均值( mu )和标准偏差( sigma ) 输出:反伽马分布的可能性( y ) 该代码计算逆伽马分布的可能性。 逆Gamma分布的描述请参阅。逆Gamma分布的人口参数最初是形状参数和比例参数,但是出于实际目的,此代码以算术平均值和标准差作为输入参数编写。 您可以根据Wikipedia网页修改代码。 例子 此代码块绘制
2022-12-12 23:04:28 5KB 系统开源
1
13.1 极大似然估计的原理 极大似然的估计原理可以由下面的程序得到说明。我们首先生成 10 个服从 正态分布的总体,每个总体的均值都不同,依次为 0,1,2,3,4,5,6,7,8, 9。方差相同,均为 1。然后我们随机地取出一个总体,从中抽出 10 个样本,因 为事先不知道是从哪一个总体中抽出来的,所以我们分别用已知的 10 个总体参 数值代入似然函数,计算出 10 个似然函数值,取其中 大的似然值,认为该样 本是从相应的总体中取出的(从而联合概率密度也 大化)。然后我们让计算机 告诉我们它是从第几个总体中取样的,并与我们的判断进行对比。 *===========================begin================================== capt prog drop mle prog mle /*生成10个均值不同、方差均为1的正态总体,每个总体取8个样本*/ drawnorm double x0-x9,n(8) m(0,1,2,3,4,5,6,7,8,9) clear global i=int(10*uniform()) //设定一个随机数,用于随机取出一个总体 forv j=0/9 { gen lnf`j' =-0.5*ln(2*_pi)*8-sum(0.5*(x$i-`j')^2) //对取出的总体计算似然值 scalar lnf`j'=lnf`j'[_N] //最终的似然值 } scalar list // 比较10个似然值哪个最大,猜想是从第几个总体取出来的? end mle *根据10个似然值,猜想是从第几个总体取出来的? di "所抽中的样本为" as error "X"$i //显示真正的取样总体是什么 *===========================end==================================== 在现实中,我们并不知道任何一个真正的总体参数,因此,只能借助于找到 样本似然值(实际上是联合概率密度的对数值) 大的总体参数,即认为其是总 体参数。在 STATA 中实现 大似然法的估计必须自己编写程序。下面的例子说 明了如何利用 stata 编写程序来实现对模型的极大似然估计。 13.2 正态总体均值和方差的极大似然估计 *===========================begin================================== capt prog drop bb prog bb //定义程序的名称 args lnf u v //声明参数,u 为均值,v为方差 quietly replace `lnf' = -0.5*ln(2*_pi) - ln(`v') -0.5*($ML_y1-`u')^2/(`v')^2 end drawnorm x,n(100) m(10) sd(3) clear//模拟均值为10,方差为3的100个正态样本 ml model lf bb (x=) (variance:) //利用迭代法则进行极大似然估计
2022-11-05 22:27:01 2.41MB stata
1