猫狗人鼠带标注数据
2024-06-07 08:17:22 253B
1
Labelme是一个开源的图像标注工具,由麻省理工学院(MIT)开发。它是一个在线的JavaScript工具,可以在任何地方使用,无需在电脑中安装大型数据集。此外,Labelme也可以在PyCharm中运行,方便进行二次开发。Labelme的使用和二次开发涉及许多知识。比如,可以通过修改相应的.py文件来实现汉化,将界面上的英文菜单和提示信息改为中文。此外,Labelme的界面开发使用了图形开发工具QT Designer,这是一种可以集成到PyCharm中的工具,可以生成.ui文件并转换为.py文件,从而实现图形界面开发。在使用和研究Labelme的过程中,可能会遇到一些问题,例如转化为.exe文件时的路径不正确问题,需要根据提示信息修改程序路径;或者图片不能显示的问题,需要将图片转换为base64形式保存。这些都是PyInstaller需要完善的地方。总的来说,Labelme是一个强大的图像标注工具,适合在图像处理和机器学习等领域使用。 项目源地址:https://github.com/wkentaro/labelme/releases
2024-04-23 07:39:29 105.73MB javascript 开发工具 数据标注 数据集
1
1、资源内容:yolo数据增强、yolo已标注数据集增强、.txt格式数据集增强;包含旋转、平移、翻转、裁剪、调整亮度和增加噪声6中增强方式随 2、代码特点:内含运行结果,不会运行可私信,参数化编程、参数可方便更改、代码编程思路清晰、注释明细,都经过测试运行成功,功能ok的情况下才上传的。 3、适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 4、作者介绍:某大厂资深算法工程师,从事Matlab、Python、C/C++、Java、YOLO算法仿真工作10年;擅长计算机视觉、 目标检测模型、智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、智能控制、路径规划、无人机等多种领域的算法仿真实验,更多源码,请上博主主页搜索。 -------------------------------------------------------------------------- -
2024-04-21 02:55:29 11KB 数据集
YOLOv5框架,将源码进行封装,并利用pyqt实现了训练+检测2个部分的界面功能。训练部分,从图片爬虫下载、数据标注、数据集配置到最后的训练;检测部分,从检测参数设置(支持实时设置置信度和IOU等)、数据选择(支持图片、视频和多种摄像头)到结果显示。全部实现界面开发和多线程调度处理。
2024-03-26 17:58:34 319.02MB pyqt 爬虫 数据集 yolov5
1
检测岸边钓鱼人员的数据集2,1000张项目数据集,已标注数据集,下载后可直接进行训练
2024-02-18 17:56:53 41.55MB fishing 目标检测 已标注数据集
红细胞完整标注(367个显微镜图像) 红细胞完整标注(367个显微镜图像) 红细胞完整标注(367个显微镜图像)
2022-10-22 22:05:34 7.44MB 数据集 红细胞 标注 深度学习
1
labelImg软件包,用于标注数据
2022-07-27 20:05:21 6.3MB 标注图片
1
压缩包内提供百度网盘下载链接,永不失效。 该数据集为自采集数据,包含训练集及验证集3880张,测试集1770张。标签为人行道和斑马线两种标签,目前支持XML与YOLO格式的目标检测网络训练。可用于道路安全、行人礼让等任务探索。 该数据集为自采集数据,包含训练集及验证集3880张,测试集1770张。标签为人行道和斑马线两种标签,目前支持XML与YOLO格式的目标检测网络训练。可用于道路安全、行人礼让等任务探索。 该数据集为自采集数据,包含训练集及验证集3880张,测试集1770张。标签为人行道和斑马线两种标签,目前支持XML与YOLO格式的目标检测网络训练。可用于道路安全、行人礼让等任务探索。
2022-07-13 21:07:35 358B 深度学习 目标检测 YOLOv5 人工智能
七步法洗手数据集:内含标注数据以及视频数据
2022-07-11 19:15:16 902.15MB 深度学习 视频分析
实例分割coco标注数据集.zip
2022-06-16 11:04:04 178.16MB 数据集