文字分类 文本分类(文本分类)是自然语言处理中的一个重要应用技术,根据文档的内容或主题,自动识别文档所属的预先定义的类别标签。文本分类是很多应用场景的基础,某些垃圾邮件识别,舆情分析,情感识别,新闻自动分类,智能客服机器人的合并分类等等。此处分为两个部分: 第1部分:基于scikit学习机器学习的Python库,对比几个传统机器学习方法的文本分类 第2部分:基于预训练词向量模型,使用Keras工具进行文本分类,用到了CNN 本文语料:,密码:P9M4。更多新闻标注语料,。 预训练词向量模型来自,下载地址: 。 第1部分:基于scikit-learn机器学习的文本分类方法 基于scikit-
2024-06-24 14:49:13 208KB python nlp machine-learning deep-learning
1
1.2 项目目标 使用机器学习 和 情感词典 这两种方法 分别对中文新闻类文本进行情感极性分析 输入一段新闻文本能够得到文本的情感极性 1.3 目标人群 需要对已有中文文本数据进行情感分析的企业及用户 APP中需要集成中文文本情感分析功能的开发人员 从事中文文本情感分析与挖掘的研究人员
2023-03-14 20:55:17 28.28MB 情感分析 中文 毕业设计
1
随机森林图像matlab代码步步森林 StepForest:使用局部强度和纹理特征分割结肠组织学图像中腺体的机器学习方法 为在结肠组织学图像中进行腺体分割而创建的基于机器学习的图像分割算法,可以针对其他图像分割问题进行修改。 该算法使用一种新颖的分层随机森林方法,其中使用3个级别的随机森林beeen来进行更好的分割。 为了测试该算法,使用了GlaS @ MICCAI'2015:腺体分割挑战赛()的数据集。 可在上述网站的“下载”标签下下载。 使用的第三方工具箱/代码(由相应作者提供的许可控制):- haralickTextureFeatures由Rune Monzel() Matlab的污点归一化工具箱,作者是Warwick大学的Nicholas Trahearn和Adnan Khan(),这些第三方工具箱/代码的源代码已上传到“工具箱”文件夹下。 可以下载最新版本,并可以从给定的网站获取许可证信息 这项研究是由Rupali Khatun进行的。 这项工作最初是在加尔各答的印度统计研究所(ISI)的电子和通信科学部门(ECSU)以及印度统计研究所(ISI)的印度模式识别和人工智能部门(
2023-03-07 12:57:08 7.89MB 系统开源
1
BM3D代码matlab denoising_dl 基于深度学习和其他机器学习方法的图像或视频降噪。 该程序将探索许多神经网络对静止图像进行降噪,并且将来还将扩展到视频降噪。 当前,已实现具有批处理归一化的MLP / CNN / CNN。 比较的黄金程序是BM3D,python版本来自:。 经过测试,最终结果与BM3D matlab不同。 让我们使用matlab作为参考代码。 原始python代码git:原始BM3D是matlab版本,在这里: 有一些BM3D源代码:VapourSynth-BM3D:这是围绕Marc Lebrun的BM3d实现的python包装器:
2023-03-04 10:15:42 71.05MB 系统开源
1
机器学习方法应用在晶圆生产线上通过机器学习方式解决缺陷
2022-06-30 18:12:58 1.78MB 人工智能
背景 几乎不可能预测某人何时会死于自杀,但通过早期干预,许多死亡是可以预防的。 使用机器学习算法的临床试验已经能够使用患者的语言来计算某人在特定时间点自杀的可能性。 在这里,我们确定与自杀风险相关的语言特征在出院 30 天后是否持续存在。 方法利用多个医院基地急诊科和门诊部将受试者(n=253)纳入两组之一:自杀组或对照组。 他们对旨在收集思想标记的标准化工具和访谈的React被记录下来,并用机器学习算法进行分析。 大约 30 天后,受试者再次接受采访,并对他们采访中的语言进行分析,以确定是否存在自杀意念。 结果 结果表明,初次相遇时用于对自杀进行分类的语言特征在 30 天后仍存在于参与者的讲话中(AUC = 0·89(95% CI:0·85-0·95),p < 0 ·0001) 反之亦然; 在第二次采访中训练的分类器可以识别产生第一次采访的队列(AUC = 0·85(95% CI:0·81–0·90),p < 0·0001)。 解释 这种方法探讨了自杀式访谈在记录 30 天后的稳定性。 它通过计算创新和完善的计算语言方法来实现。 结果表明,患者语言所表现出的想法在首次披露后 30 天仍对机器学习有效,但与标准措施的初始相关性则无效。 这在寻求后续护理的决策支持时非常有用。 资金说明:辛辛那提儿童医院医疗中心,创新基金。 利益声明:作者没有要声明的竞争利益。 伦理批准声明:一项前瞻性临床试验于 2013 年 10 月至 2015 年 3 月期间进行(机构审查委员会 (#2013-3770) 批准)。
2022-06-29 23:15:35 172KB Natural Language Processing
1
机器学习方法应用在晶圆生产线上通过机器学习方式解决缺陷自动监测系统
2022-06-26 09:08:27 60KB 人工智能课设 南开大学
通过多种机器学习股票价格预测,包括随机森林(Random Forest),决策树(SVM),线性回归(LinearRegression),长短期记忆(LSTM)。 利用toshare获取600519.sh 2000-2020年数据,除了随机森林外基本都是以前19年数据做训练集,最后一年做预测。数据获取的文件在toshare文件夹,获取好的数据集一并在内。想自己拿数据,注册toshare换接口即可。 这些内容都是结课实践要求下我搜集网络资料学习而来,自己理解修改整理使得基本以同一个数据集进行预测。可以说对国内网络上参差不齐的简单机器学习股票预测做了一个复现整理。这对我的机器学习知识有一定帮助,也希望能帮助到需要它的人。 全部为jupterbook格式,代码注释全面且执行效果都在。 适合个人学习、课程团队作业、毕业设计参考等。
2022-06-17 16:06:31 864KB lstm 线性回归 随机森林 股价预测
早期的癌症预测非常重要,因为患者可以准备应对它。 有几种机器学习模型可以通过识别高风险的独立样本来帮助预测癌症,从而简化癌症试验的设计和规划。 这些模型使用生物标志物(例如年龄,更年期,肿瘤大小,肿瘤,乳房,乳房四分之一尺度)来预测乳腺癌。 但是,这些模型的主要缺点是后期预测以及准确性低。 因此,在这里介绍一种使用基因表达谱(基因组数据)来早期预测乳腺癌的系统。 该模型是使用不同的机器学习算法构建的,例如高度通用的支持向量机(SVM),朴素贝叶斯定理,决策树和最近邻居方法,可使用基因表达谱预测乳腺癌。
2022-05-14 18:15:28 318KB SVM (Support Vector Machine)
1
环境科学中的机器学习方法 神经网络与核方法.doc