无监督医学图像分割 刘立豪,当归I阿维莱斯·里维罗和卡罗拉·比比亚恩·舍恩利布。 介绍 在此存储库中,我们提供了的PyTorch实现。 要求 火炬1.5.0 火炬视觉0.4.2 SimpleITK 1.2.4 opencv-python 4.2.0.32 用法 克隆存储库: git clone https://github.com/lihaoliu-cambridge/unsupervised-medical-image-segmentation.git cd unsupervised-medical-image-segmentation 下载LPBA40数据集的图像和分割蒙版: LPBA40图片: LPBA40标签: 将它们解压缩到文件夹datasets/LPBA40 : datasets/LPBA40/LPBA40_rigidly_registered_pairs data
2024-06-17 17:50:56 114KB Python
1
监督学习-线性模型-2. 岭回归&Lasso回归
2024-06-01 20:10:14 263KB 线性回归 监督学习
1
内容概要:该资源介绍了使用机器学习方法对毒蘑菇进行分类的实现。主要包含了逻辑回归、高斯朴素贝叶斯、支持向量机、随机森林、决策树和人工神经网络等六种监督学习模型的应用。 适用人群:对机器学习和分类算法感兴趣的学习者、数据科学家、机器学习工程师等。 使用场景及目标:本资源可用于学习如何使用不同的监督学习模型对毒蘑菇进行分类,帮助用户理解各种模型的原理和应用场景,并能够根据实际需求选择合适的模型进行分类任务。 其他说明:资源中提供了详细的代码示例和实验结果,以及对比不同模型在毒蘑菇分类任务上的性能评估,帮助用户深入理解各个模型的优缺点和适用范围。
2024-05-29 18:49:19 39KB 机器学习 逻辑回归 特征工程
1
为了提高利用深度神经网络预测单图像深度信息的精确度,提出了一种采用自监督卷积神经网络进行单图像深度估计的方法。首先,该方法通过在编解码结构中引入残差结构、密集连接结构和跳跃连接等方式改进了单图像深度估计卷积神经网络,改善了网络的学习效率和性能,加快了网络的收敛速度;其次,通过结合灰度相似性、视差平滑和左右视差匹配等损失度量设计了一种更有效的损失函数,有效地降低了图像光照因素影响,遏制了图像深度的不连续性,并能保证左右视差的一致性,从而提高深度估计的鲁棒性;最后,采用立体图像作为训练数据,无需标深度监督信息,实现了端到端的单幅图像深度估计。在 Tensorflow框架下,用KIT和 Cityscapes数据集进行实验结果表明,与目前的主流方法相比,该方法在预测深度的精确度方面有较大提升,拥有更好的深度预测性能。
2024-05-28 17:31:59 724KB
1
DL T1053-2007)电能质量技术监督规程---------------------------------
2024-05-20 09:36:58 936KB 电能质量
1
通过多年从事绝缘技术监督的工作经验,对如何发挥监督职能,及时发现并有效管控设备隐患,提出了较好的应对策略。
2024-05-19 12:31:34 1.45MB 行业研究
1
// 功能描述 : 智能台灯设计与制作 // 说明:智能台灯具有姿势监督、调光、节能、时间提醒等功能 // ---------------------------------------------------------------- 蜂鸣器模块:PB5 LED模块:PC13 OLED 屏幕: GND 电源地 VCC 3.3v电源 D0 PA5(SCL) D1 PA7(SDA) RES PB0 DS、CS——GND 按键模块: KEY1->PB12 KEY2->PB13 KEY3->PB14 KEY4->PB15 光敏电阻:AO->PA1 温湿度模块:DAT->PA11 超声波测距模块:tring->PB11 echo->PB10 DS1302时钟模块:IO->PB7 SCK->PB8 RST->PB9
2024-04-14 19:58:59 8.43MB stm32
1
在将机器学习应用于粒子物理学的过程中,一个持续的挑战是如何超越歧视来学习基础物理学。 为此,一个强大的工具将是无监督学习的框架,在该框架中,机器无需参考预先建立的标签,即可学习对其进行训练的数据的复杂高维轮廓。 为了处理这样一个复杂的任务,必须基于对数据的定性理解,智能地构建一个不受监管的网络。 在本文中,我们围绕数据背后的物理先导模型来构建神经网络的架构。 除了使无监督学习变得易于处理外,该设计还缓解了性能和可解释性之间的现有紧张关系。 我们将框架称为Junipr:“来自不受监督的可解释PRobabilistic模型的喷气机”。 在这种方法中,组成射流的粒子动量集合被聚类为神经网络依次检查的二叉树。 训练不受监督且不受限制:网络可以决定数据与所选树形结构几乎没有对应关系。 但是,当存在对应关系时,沿树的网络输出具有直接的物理解释。 瞻博网络模型可以通过统计上的最佳似然比检验执行判别任务,并且它们可以使喷气树中每个分支的辨别力可视化。 此外,瞻博网络模型提供了可以从中得出事件的概率分布,从而提供了数据驱动的蒙特卡洛生成器。 作为第三种应用,瞻博网络模型可以对一个(例如,模拟的)数据集的
2024-02-28 20:32:09 1.51MB Open Access
1
wn 监督工具 特征: 可在任何计算机上运行(虽然不记得曾经测试过胜利) 全自动的 你可能想用 展示和讲述 如何... .. 安装 pip3 install pwnpy ...用它 pwnpy -c config.json ..使用无根的WiFi模块 # set capabilities for our python executable setcap cap_net_raw=eip /usr/bin/python3
2024-01-15 15:03:35 2.23MB wardriving zero Python
1