文本分类语料库(复旦)训练语料,本语料库由复旦大学李荣陆提供,共9804篇文档,两个预料各分为20个相同类别。
2024-06-27 11:46:10 52.26MB 文本分类
1
文字分类 文本分类(文本分类)是自然语言处理中的一个重要应用技术,根据文档的内容或主题,自动识别文档所属的预先定义的类别标签。文本分类是很多应用场景的基础,某些垃圾邮件识别,舆情分析,情感识别,新闻自动分类,智能客服机器人的合并分类等等。此处分为两个部分: 第1部分:基于scikit学习机器学习的Python库,对比几个传统机器学习方法的文本分类 第2部分:基于预训练词向量模型,使用Keras工具进行文本分类,用到了CNN 本文语料:,密码:P9M4。更多新闻标注语料,。 预训练词向量模型来自,下载地址: 。 第1部分:基于scikit-learn机器学习的文本分类方法 基于scikit-
2024-06-24 14:49:13 208KB python nlp machine-learning deep-learning
1
基于深度学习的分类 python代码-基于深度学习的英文文本分类研究 python代码-基于深度学习的英文文本分类研究 python代码-基于深度学习的英文文本分类研究
2024-06-11 09:23:00 533KB python 深度学习
1
内容 1)自选文本分类数据集; 2)测试单向、双向TextRNN深度网络算法分类精度; 3)编写、运行程序并查看结果; 4)调节单向、双向TextRNN算法相关参数,分析其对模型效果的影响
2024-06-09 00:19:15 911KB 网络 网络 数据集
1
我的专栏《NLP算法实战》https://mp.csdn.net/mp_blog/manage/column/columnManage/12584253中第4章 文本分类与情感分析算法 用到的数据。 文本分类和情感分析是自然语言处理(NLP)中常见的任务,它们可以用于将文本数据归类到不同的类别或者分析文本中的情感极性。在本章的内容中,将详细讲解在自然语言处理中使用文本分类和情感分析算法的知识。
2024-05-26 21:15:45 108.47MB 数据集
1
基于 pytorch-transformers 实现的 BERT 中文文本分类代码 数据: 从 THUCNews 中随机抽取20万条新闻标题,一共有10个类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐,每类2万条标题数据。数据集按如下划分: 训练集:18万条新闻标题,每个类别的标题数为18000 验证集:1万条新闻标题,每个类别的标题数为1000 测试集:1万条新闻标题,每个类别的标题数为1000
2024-05-09 10:42:25 732.57MB pytorch bert 文档资料 人工智能
1
基于CNN的中文文本分类算法(可应用于垃圾邮件过滤、情感分析等场景)
2024-04-14 09:54:07 13.33MB
1
可直接运行, 1、内容概要:本资源主要基于XGBoost与LightGBM实现文本分类,适用于初学者学习文本分类使用。 2、数据集为电商真实商品评论数据,主要包括训练集data_train,测试集data_test ,经过预处理的训练集clean_data_train,训练好的word2vec词向量模型w2v_model.pkl和中文停用词表stopwords.txt,可用于模型训练和测试,详细数据集介绍见商品评论情感数据说明文档。 3、源代码:word2vec_analysis.py 是基于Word2Vec进行词向量的生成,采用向量平均求得句向量,然后分别构建RandomForest和GBDT分类模型进行文本分类。 4、源代码:xgboost_model.py是基于xgboost模型对文本进行分类。 5、源代码:lightGBM_model.py是基于lightGBM模型对文本进行分类。
2024-04-10 20:39:49 37.99MB 数据集
1
在LDA建模的基础上,使用各种分类器对文本分类,即利用LDA的建模结果提高分类效率和精度。
2024-03-25 09:50:13 1.36MB
1
自然语言处理+Transformer+文本分类+情感分析 自然语言处理+YOLO+图像描述+图文生成 使用Transformer模型进行文本分类和情感分析的教程,介绍了Transformer模型的基本原理、结构和实现方法,以及如何使用Hugging Face的Transformers库和PyTorch框架来构建、训练和评估文本分类模型。本教程适合想要学习和应用Transformer模型的自然语言处理爱好者和开发者,可以帮助他们掌握Transformer模型的基本知识和技巧,以及如何利用Transformer模型进行文本分类和情感分析等任务。 使用Transformer模型进行文本分类和情感分析的教程,介绍了Transformer模型的基本原理、结构和实现方法,以及如何使用Hugging Face的Transformers库和PyTorch框架来构建、训练和评估文本分类模型。本教程适合想要学习和应用Transformer模型的自然语言处理爱好者和开发者,可以帮助他们掌握Transformer模型的基本知识和技巧,以及如何利用Transformer模型进行文本分类和情感分析等任务。使用Tr
2024-03-11 15:36:15 636B pytorch pytorch 自然语言处理 transformer
1