图表效果及代码实现讲解链接:https://blog.csdn.net/zhangjiujiu/article/details/142060480 内容概要:利用ECharts的强大功能,加载人体结构svg数据,并且人体器官和条形图进行联动。 适用人群:echarts初学者、数据分析与可视化爱好者、svg图形应用开发者。 使用场景:svg图形可视化项目、医学领域可视化。 目标:掌握ECharts中svg图形配置技巧与定制、条形图和svg图形联动、实战演练前端开发中的数据处理与展示。 在当今的信息时代,数据可视化成为分析数据、传递信息的重要手段。ECharts作为一个功能强大的图表库,提供了丰富多样的图表类型,包括常见的折线图、柱状图、饼图等,而它也支持高度可定制的SVG图形。本文将详细介绍如何利用ECharts加载人体结构的SVG数据,并实现与条形图的联动效果,从而在医学领域的可视化项目中发挥巨大的作用。 了解ECharts的基本概念对于初学者来说是十分必要的。ECharts是百度开源的一个使用JavaScript实现的开源可视化库,它可以在各种设备上流畅运行,并且配置简单、扩展灵活。ECharts提供了多种内置图表类型,并允许用户自定义图表的外观和行为。 在本文所介绍的案例中,我们将重点关注如何将人体结构的SVG数据加载到ECharts中。SVG(Scalable Vector Graphics)是一种基于XML的图像格式,用于描述二维矢量图形。在数据可视化中,SVG图形因其良好的可缩放性和高质量渲染而受到青睐。特别是在需要展示复杂结构如人体器官时,SVG可以精确地展现细节,而不会失真。 通过链接提供的文章,我们可以学习到具体的实现方法。需要获取人体器官的SVG数据,这些数据可以是通过图形设计软件绘制的矢量图形,也可以是从其他开源项目中获取的。一旦有了SVG数据,接下来就是在ECharts中配置这些图形,使其成为图表的一部分。 在ECharts中配置SVG图形,主要涉及到图表的series配置项。通过在series中定义type为'series',并设置对应的SVG数据和图表类型,比如'bar'(条形图),可以实现SVG图形与条形图的联动。具体实现时,我们可以通过绑定事件来改变SVG图形的样式或位置,或根据条形图的数据来动态调整SVG图形的大小和形状,从而达到联动的效果。 该技术尤其适合于那些希望在医学教育、疾病诊断、健康监测等方面进行数据可视化展示的开发者。例如,通过将人体器官的SVG图形与相关的医学数据结合起来,可以直观地展示不同器官的功能状态,以及疾病对各器官的具体影响。 ECharts配合SVG数据,不仅能够实现丰富的数据可视化效果,还能够在特定领域如医学中提供更加直观和专业的展示。对于ECharts初学者、数据分析与可视化爱好者和SVG图形应用开发者而言,通过实际案例的学习和实践,可以迅速掌握ECharts中SVG图形的配置技巧,以及如何实现不同图表类型之间的联动,最终达到将复杂数据转化为易于理解的图形展示的目的。
2025-04-01 14:09:04 891KB echarts svg地图 统计分析 数据可视化
1
4th Digital Signal Processing 的课后习题解答 1.1 (a) One dimensional, multichannel, discrete time, and digital. (b) Multi dimensional, single channel, continuous-time, analog. (c) One dimensional, single channel, continuous-time, analog. (d) One dimensional, single channel, continuous-time, analog. (e) One dimensional, multichannel, discrete-time, digital. 1.2 1 (a) f = 0.01π 2π = 200 ⇒ periodic with N p = 200. 30π 1 (b) f = 105 ( 2π ) = 17 ⇒ periodic with N p = 7. 3π (c) f = 2π = 32 ⇒ periodic with N p = 2. 3 (d) f = 2π ⇒ non-periodic. 1 31 (e) f = 62π 10 ( 2π ) = 10 ⇒ periodic with N p = 10. 《第四版数字信号处理Proakis_and_Manolakis解题指南》是针对数字信号处理课程的一份详尽习题解答资源,涵盖了多种类型的信号特性。在本资料中,主要讨论了一维、多维、离散时间与连续时间以及单通道与多通道的信号,并通过具体的频率分析来探讨信号的周期性。 在1.1题中,区分了不同类型的信号: (a) 一维、多通道、离散时间和数字信号。 (b) 多维、单通道、连续时间和模拟信号。 (c) 一维、单通道、连续时间和模拟信号。 (d) 同(c),一维、单通道、连续时间和模拟信号。 (e) 一维、多通道、离散时间和数字信号。 1.2题涉及频率与周期性的计算,如: (a) 频率f = 0.01π,周期Np = 200。 (b) 频率f = 30π,周期Np = 7。 (c) 频率f = 3π,周期Np = 2。 (d) 频率为3/2π,非周期性。 (e) 频率f = 62π/10,周期Np = 10。 1.3题考察了不同信号的周期性: (a) 周期为Tp = 2π/5。 (b) 频率f = 5/2π,非周期性。 (c) 频率f = 11/2π,非周期性。 (d) 分析了不同正弦函数的周期性,指出它们的乘积是非周期性的。 (e) 识别了三个正弦函数的周期,x(n)的周期是16,即它们的最小公倍数。 1.4题涉及频率与样本数的关系: (a) 描述了频率与样本数N的关系,以及最大公约数(GCD)如何影响周期。 (b) 和(c)部分展示了N的不同值下,k与其最大公约数GCD的组合,以及由此推导出的周期Np。 1.5题通过示例图1.5-1展示了信号xa(t)的波形,计算了信号x(n)的表达式,从而得出其频率f = 1/6π,周期Np = 64。 总结来说,这份解答指南深入浅出地介绍了数字信号处理中的基本概念,包括信号的维度、类型、连续性和离散性,以及周期性和频率的计算。通过具体的习题解答,帮助学习者理解并掌握这些关键知识点,对提升数字信号处理的理解和应用能力具有重要作用。
2025-03-28 11:41:45 2.91MB 数字信号处理 习题解答
1
传统的单脉冲测向方法主要有3种,分别是半阵法、加权法和和差比幅法。在了解单脉冲测向之前,首先要知道确知波束形成,确知波束形成就是设计一组权值,使得对各个阵元接收到的信号进行加权求和之后,形成一种空间滤波,选择性的接收期望方向的信号而抑制其他方向的信号。在实际情况中,前端处理得到的波束指向角​ 不一定等于 ,但真实角度一般出于波束的3dB带宽以内。因此我们就需要一种方法在已知确知波束指向角的情况下测量期望信号的真实方向。单脉冲测角就是用于解决该问题。通常情况下,单脉冲测角需要在阵列的输出端分别形成和波束和差波束,其中和波束要求在波束指向处形成主瓣增益,而差波束则要求在波束指向处形成零陷。
2025-03-27 17:27:41 1.98MB matlab
1
雷达信号处理是雷达技术中的一个核心领域,它涉及从雷达系统接收的信号中提取有用信息的各种方法和技巧。随着雷达技术的发展,对信号处理的要求越来越高,这就要求研究者和工程师必须掌握信号处理的基础知识,以确保从雷达回波中准确无误地获取目标信息。《雷达信号处理基础》第二版的出版为这一领域提供了系统的学习资料。 第二版书籍由Mark A. Richards博士编写,他是乔治亚理工学院的教师,并在雷达信号处理领域有着深入的研究。此书旨在为读者提供雷达信号处理的基础知识,书中详细介绍了雷达信号处理的核心概念、原理和技术。书籍涵盖了从基本的雷达方程,到复杂的信号检测、估计和分类方法,为读者构建了一个全面的知识框架。 雷达信号处理涵盖了多个关键领域,包括信号检测、信号估计、目标跟踪和合成孔径雷达技术等。信号检测是指如何区分和识别目标信号与噪声信号的过程,这一过程对于雷达的有效运作至关重要。信号估计则关注于从含有噪声的信号中提取目标参数的技术,如距离、速度、角度等。目标跟踪是利用雷达连续测量数据来估计和预测目标运动轨迹的过程。合成孔径雷达技术是一种特殊的雷达技术,能够生成高分辨率的图像,常用于地面成像和地形测绘。 在雷达系统中,信号处理也包括对信号进行适当的变换,例如傅里叶变换、小波变换等,以改善信号的质量和可提取的信息量。此外,信号处理还包括对多径效应的处理,这是指雷达信号在到达接收器前可能经过多个路径的情况,这种效应可能导致信号失真。 为了更精确地处理和分析信号,雷达信号处理工程师们经常使用各种数学工具和算法,如卡尔曼滤波器、维纳滤波器等。这些工具能帮助工程师从复杂的信号中提取关键信息,并减少噪声的影响。随着计算机技术的发展,数字信号处理在雷达系统中变得越来越重要。数字信号处理器能实现复杂的算法,提高雷达的性能和可靠性。 雷达信号处理不仅需要理论知识,还需要大量的实践和实验,通过不断测试和优化,才能最终设计出符合实际应用需求的雷达系统。因此,实践环节也是《雷达信号处理基础》第二版中不可或缺的一部分。 本书的读者对象包括雷达系统工程师、信号处理领域的研究人员和学生等。通过阅读本书,他们可以全面地了解雷达信号处理的各个方面,掌握其理论基础和实用技术,从而在实际工作中发挥重要的作用。此外,由于雷达技术在军事、民用和科研领域都有广泛的应用,因此,掌握雷达信号处理的基础知识对于这些领域的发展同样具有重要意义。 本书的版权归属于McGraw-Hill Education出版社,并且在版权法的保护下,未经出版社允许,不得私自复制、分发或者存储该出版物的任何部分。ISBN 978-0-07-179833-4和MHID 0-07-179833-1是该书的电子版和印刷版的唯一识别编号。 本书的电子版由Cenveo® Publisher Services转换而来,eBook版本使得读者能够在计算机、平板电脑或智能手机等设备上阅读。McGraw-Hill Education的电子书以数量折扣的方式提供,可用于作为奖金、销售促销或企业培训项目。如需联系代表,请访问www.mhprofessional.com。 本书的使用受到一定的限制条款约束,使用时需遵守这些条款。虽然本书提供了可靠的资料来源,但是McGraw-Hill Education并不能保证书中的信息完全准确、充分或完整,对于使用本书信息所导致的任何错误、遗漏或结果,McGraw-Hill Education也不负责任。 《雷达信号处理基础》第二版以其系统性和完整性,是学习和应用雷达信号处理不可多得的参考资料。通过阅读本书,可以为从事雷达相关领域工作的专业人士提供深入的理论支持和实践指导。
2025-03-27 11:30:03 29.38MB
1
现代数字信号处理 皇甫堪课件
2025-03-27 01:14:18 7.15MB 数字信号处理
1
连续波雷达信号处理,尤其是针对频率调制连续波(FMCW)合成孔径雷达(SAR)的技术,是一个高度专业化的领域,涉及雷达信号处理的多个方面。FMCW技术与SAR技术的结合,导致了高分辨率的轻量级、低成本成像传感器的出现。这些系统在航空地球观测领域具有重要的应用价值,尤其是在需要频繁访问、低成本或小型化设备的情况下。 FMCW雷达技术具备一些独特的优势,比如持续的低发射功率,这意味着相对于脉冲雷达系统来说,FMCW雷达更加经济且体积更小。然而,FMCW传感器的使用受到发射信号中非线性现象的限制,这会降低对比度和距离分辨率,特别是在需要高分辨率长距离应用的情况下。 为了解决这一问题,本资料提出了一个新颖的信号处理解决方案,它可以解决整个距离剖面的非线性问题。该方案摒弃了在脉冲雷达算法中通常使用的“停止-走”近似法,在某些情况下,这种近似法在FMCW SAR应用中是无效的,因此必须考虑扫频过程中的运动。论文中提出了不使用“停止-走”近似的FMCW SAR信号模型的解析发展,并将所提出的方法应用于条带映射、聚光和数字波束成形SAR操作模式。这些算法通过处理在代尔夫特科技大学建造的演示系统上收集的真实FMCW SAR数据进行了验证。 在这篇文章中,作者Adriano Meta、Peter Hoogeboom和Leo P. Ligthart对于FMCW SAR系统中的非线性问题提供了一种新的解决方案,并且展示了如何不依赖于传统“停止-走”近似来对FMCW SAR信号进行精确建模。这对于SAR技术的发展具有重要意义,因为它允许更为准确地处理通过SAR系统获得的数据,并最终生成更为清晰、分辨率更高的图像。 FMCW SAR系统的另一个关键特点是在条带映射、聚光模式以及数字波束成形技术中的应用。条带映射模式下,雷达沿着飞行方向平行于地面进行扫描;聚光模式则是雷达波束指向特定区域以获得更高分辨率的图像;数字波束成形则是利用数字信号处理技术来控制波束的方向性,从而提高SAR系统的性能。这些技术在提高成像质量、增强探测能力等方面有着不可替代的作用。 论文中提到的多发射机/多接收机架构,能够利用多个接收机来收集信号,从而提升数据收集效率和成像质量。这对于飞行器搭载的SAR系统来说尤其重要,因为它能够确保在移动中实现连续稳定的信号接收和成像。 除了上述的技术细节,论文还介绍了一些关键词,如多普勒频率调制连续波(FMCW)、非线性校正、合成孔径雷达(SAR)校正和频率校正等。这些关键词不仅体现了FMCW SAR信号处理的核心概念,还揭示了该领域研究的复杂性和前沿性。 连续波雷达信号处理,特别是针对FMCW SAR的研究,不仅在技术上具有创新性和实用性,而且在航空地球观测、环境监测、军事侦察等多个领域都有着广泛的应用前景。随着技术的不断进步,我们可以预见,该领域将会出现更多突破性的进展。
2025-03-26 17:08:07 1.71MB FMCW 信号处理 合成孔径雷达
1
小波分析是一种时频分析方法,它的核心思想是通过一系列不同尺度的小波基函数来分析信号,这种方法在处理非平稳信号方面具有独特的优势。非平稳信号指的是那些在时域内频率特性发生变化的信号,例如在电机故障诊断中经常遇到的突变信号和噪声。传统傅里叶变换在分析这类信号时存在局限,因为它只能提供信号的频率分布,而不能在时间域上对信号进行局部化分析。 小波变换能够弥补这一不足,它可以在时域和频域上同时实现对信号的局部化处理。它允许信号的多尺度分解,通过选择合适的小波基函数和尺度因子,能够在不同的时间尺度上对信号进行细致分析。这种特性使得小波分析非常适合于电机故障诊断中信号奇异性(即信号变化的突变点)的检测。小波分析能够有效地定位和检测出信号中的突变点,这对于故障诊断来说至关重要,因为故障往往伴随着信号的突变。 在电机故障诊断领域,常见的故障类型包括定子故障、转子故障和轴承故障等。其中,定子故障由于绝缘损坏而导致的匝间短路故障较为常见。小波分析能够在电机振动信号中检测到这些故障引起的突变信号,通过对采集到的信号进行小波包分解,然后利用分解后的小波系数重构信号,并计算各频段的能量特征值,提取出故障特征。这有助于精确地诊断出故障发生的时间以及故障类型。 小波变换在信号奇异性的检测中通常以卷积的形式来定义。通过选取适当的光滑函数,可以构建小波变换模型。常见的光滑函数包括高斯函数或基数B样条函数。小波变换能够分析信号的奇异性,即信号的局部变化特征。它可以识别出信号中的突变点,这些点对应于信号快速变化的部分。小波变换的模极大值通常对应于信号的快速变化部分,而模极小值对应于信号的缓慢变化部分。 然而,在实际应用中,小波变换对时间定位的准确性依赖于光滑函数尺度的选择。尺度越小,对信号的时间定位越精确,但同时噪声的影响也越大。在小尺度下,小波系数容易受到噪声的干扰,导致伪极值点的产生。相反,在大尺度下,虽然噪声得到了一定的平滑,但同时也会导致对突变点定位的偏差。因此,在利用小波变换来确定信号突变点时,需要在不同的尺度下综合分析,以避免交迭干扰,并得到准确的定位结果。 小波分析的这些特点使其在电机故障诊断中显示出极大的应用价值。通过对信号的细致分析,能够及时发现电机中的早期故障,有效突破了传统信号处理方法的局限,为电机故障的早期预防和维护提供了有力支持。同时,小波分析在其他领域的应用也日益广泛,如图像处理、生物医学信号分析等,它已成为现代信号处理不可或缺的工具之一。
2025-03-24 16:54:06 314KB 小波分析
1
该论文提出了一种运用小波分析来诊断电机故障的方法
2025-03-24 16:51:05 187KB 小波分析 电机故障诊断
1
在汽车电子领域,CAN(Controller Area Network)是一种广泛使用的通信协议,尤其在现代车辆的分布式电子系统中。标题“J2012-DA故障诊断代码定义和故障类型字节定义”涉及到的是与CAN网络相关的故障诊断标准。J2012是特定于汽车行业的一个标准,它规定了如何解析和理解车载网络中的错误代码,以便于故障排查和维修。 描述中提到的“数字附件电子表格”很可能是一个包含详细信息的表格,列出了各种J2012-DA故障诊断代码及其对应的故障类型字节定义。这样的表格对于技术人员来说是非常宝贵的资源,因为他们可以快速查找并理解车辆系统中出现的问题。 故障诊断代码(Diagnostic Trouble Codes, DTCs)是车辆电子系统用于报告问题的编码方式。它们通常由三个或四个字母或数字组成,例如"P0100",其中第一位表示是制造商特有还是通用代码,接下来的两位或三位则标识具体的故障类型。在J2012-DA标准中,这些代码可能按照特定的结构和规则进行组织,以便于工程师理解和处理。 故障类型字节定义是DTCs的组成部分,它们提供了关于故障性质的更详细信息。这些字节可能包括故障发生时的数据,如传感器读数、系统状态等,帮助确定故障的具体原因。通过对这些字节的解读,技术人员可以更深入地了解故障发生的情况,从而采取适当的维修措施。 在文件名称列表中的“J2012DA_201812”,可能指的是这个标准的一个更新版本,发布于2018年12月。这意味着随着时间的推移,标准可能会进行修订以适应新的技术和需求。 了解J2012-DA故障诊断代码及其故障类型字节定义对汽车行业的技术人员至关重要。他们需要熟悉这些标准,以便有效地诊断和修复车辆的电气和电子系统问题。这份压缩包文件提供的详细信息将帮助他们快速定位问题,提高工作效率,减少车辆停机时间,确保行车安全。通过持续学习和应用这些知识,技术人员可以在日益复杂的汽车技术环境中保持竞争力。
2025-03-23 16:49:37 1.93MB can
1
仿真内容具体看本人的《基于分数傅里叶变换的chirp信号参数估计》文章。 主要仿真了单分量情况chirp信号参数估计问题、多分量情况chirp信号参数估计问题、强弱分量同时存在情况下chirp信号参数估计问题以及含有噪声情况下chirp信号参数估计问题。 可用于初学者对分数阶傅里叶变换的学习,也可基于本代码将分数阶傅里叶变换应用于相关工程领域,如基于分数域变换提取信号的分数域特征用于机器学习等。
2025-02-01 21:36:23 6KB 信号处理 分数阶傅里叶变换
1