提出一种改进决策1-SVM方法(1-DISVM),并由此构建了基于单类样本训练的1-DISVM多分类模型。1-DISVM是1-SVM方法的改进,通过对决策算法的修正,解决了1-SVM分类精度低的不足,并将其应用于直升机减速器故障识别中。结果表明该方法能够在训练样本数量少、不准确的情况下,自动排除错误样本的干扰,获得很好的分类结果,且具有无监督学习、分类精度高、易于扩展和代价小等优点。
2023-04-11 20:28:15 52KB 工程技术 论文
1
针对电力设备巡检智能化水平较低的现状,文中将增强现实(Augmented Reality,AR)技术应用于电力设备巡检过程。文中从智能巡检终端、服务器与数据库3个层面构建了基于AR技术的电力设备智能巡检系统架构。提出基于AR技术和深度神经网络(Deep Neural Networks,DNN)算法的电力设备故障识别方法,将智能巡检终端采集的图像作为输入,在线识别电力设备可能存在的故障类型。通过仿真测试表明,所提方法故障识别时间与支持向量机(Support Vector Machine, SVM)与BP神经网络(Back Propagation-Neural network, BP-NN)算法相近。但是各类故障识别准确率均大于98%,大于SVM与BP-NN算法,所提方法能够快速准确地识别电力设备故障类型。
1
基于YOLOv4的轴承故障识别系统的设计与实现代码大全.doc基于YOLOv4的轴承故障识别系统的设计与实现代码大全.doc基于YOLOv4的轴承故障识别系统的设计与实现代码大全.doc
2022-10-19 17:05:55 811KB 基于YOLOv4的轴承故障识别系
1
人工智人-家居设计-基于GOOSE的煤矿智能变电站穿越性故障识别与隔离系统.pdf
2022-07-13 11:03:31 2.21MB 人工智人-家居
通过分析典型负载下电弧电流高频分量在时域与频域表现出的不同特征,提出一种串联交流电弧故障检测方法。该方法利用电弧电流变化率与其有效值的比值以及6~12 kHz频段电流幅值这2个特征参量进行串联交流电弧故障识别;并利用负载启动电流持续时间远远小于电弧电流持续时间的特点,设定电弧故障检测时间阈值,降低负载启动过程对串联交流电弧故障检测的影响。试验结果表明,所提方法能够实现串联交流电弧故障的快速检测,对硬件要求相对较低,简便易行。
1
为提高供电系统的可靠性,采用自研的串联型故障电弧发生器开展了不同负载类型、不同电流下的串联型故障电弧实验.以故障电弧电流信号为研究对象,对时间序列进行时域、频域特性分析,提取故障电流在时域、频域的特征参数,构建串联型故障电弧的特征向量,采用主成分分析方法对特征向量进行去冗余、降维处理.最后以主成分分析后的特征向量作为输入,从可靠性角度对比分析LVQ神经网络与K近邻算法故障诊断的优越性,建立了经K循环寻优处理后的K近邻串联型故障电弧诊断模型,并对诊断模型进行了抗扰动分析、泛化性分析.结果表明,该方法能有效地实现对电连接器串联型故障电弧的识别.
2022-05-22 21:07:23 1.29MB 行业研究
1
大数据-算法-货车底部手把和拉杆的故障识别算法研究.pdf
2022-05-06 10:05:10 2.41MB 算法 big data 文档资料
本文提出了基于机器学习的故障识别方法与系统研制。以高速列车牵引系统的故障信息为背景,在对非结构型数据特征研究的基础上,提出了改进的设备故障信息特征词提取方法和设备故障信息关联失效规则提取算法,建立了设备关联失效规则和系统的关联失效模型。基于研究内容,研制开发了复杂设备系统故障数据管理与故障识别原型系统。主要研究工作具体包括:设备故障信息特征词提取方法研究,在分析了目前复杂系统设备故障信息的特性基础上,研究了文本信息分词和特征词提取方法,给出了设备故障信息特征词提取方法。以某高速列车故障信息为例,有效提取了高速列车故障信息中的特征词。备关联失效规则算法分析研究在提取了设备故障信息特征词的基础上,基于关联分析方法,提取设备关联失效规则,建立了设备关联失效模型。以高速列车牵引系统故障信息中的特征词 为例,构建了高速列车牵引系统关联失效模型。设备故障识别方法研究在构建的系统关联失效模型和故障识别方法基础上,提出了模糊故障Petri网的故障识别方法。以高速列车牵引系统的关联失效模型基础,验证了设备故障识别方法的有效性和准确性。设备故障识别系统实现,采用...............
2022-04-27 20:07:10 16.18MB 机器学习 人工智能
为了更好的对航空发动机整机振动进行故障诊断和识别,提出了改良的FSVM隶属度和多类隶属度与信息熵的融合定量分析方法,并且和传统的FSVM隶属度分析方法进行比较。对传统的FSVM的模糊隶属度函数改良后建立了多类模糊隶属度计算模型。通过实验实例验证了该多类模糊隶属度与信息熵相结合的技术对于航空发动机整机振动状态评估和故障诊断识别非常有效,计算出振动故障模式与故障原因之间的权值,建立了一个多参数的发动机振动状态分析模型;并对各类振动原因对发动机整体状态的影响进行定量分析,为发动机的振动抑制提供量化参考指标。
2022-04-16 17:13:18 473KB 工程技术 论文
1
采用一维CNN神经网络算法,对西储大学轴承数据集分为10中故障类型进行故障识别,最终准确率很高;同时算法结构灵活,可以自定制网络及优化器,满足多张故障数据集。
1