电影评分数据集-用于电影推荐系统。有两个数据集。 数据集1:包括movies.csv和ratings.csv两个文件。movies.csv文件总共有27,279行,除第1行是表头外,每行用3列表示一部电影,分别为电影id(movieId)、电影名称(title)和电影类型(genres)。ratings.csv文件总共有20,000,264行,除第1行是表头外,每行用4列表示一位用户对一部电影的评分,分别为用户id(userId)、电影id(movieId)、评分(rating)和评分时间(timestamp)。这里的评分时间是用unix时间戳表示的。在这个数据集中并没有提供用户的个人信息,可能是出于保护用户隐私的考虑。 数据集2:ratings.dat是另一个电影评分数据集。包含了6000多位用户对近3900个电影的共100万(1,000,209)条评分数据,评分均为1~5的整数,其中每个电影的评分数据至少有20条。
1
读书笔记:秒杀音乐商店项目实战Redis源码推荐系统
2025-12-29 14:45:14 43.25MB
1
项目源码:基于Hadoop+Spark招聘推荐可视化系统 大数据项目 计算机毕业设计 基于Hadoop+Spark的招聘推荐可视化系统是一种利用Hadoop和Spark等大数据处理技术,实现招聘推荐和可视化展示的应用系统。以下是该系统的主要介绍: 数据采集:系统通过各种渠道(如招聘网站、社交媒体等)获取大量的招聘相关数据,包括职位信息、公司信息、求职者信息等。这些数据以结构化或半结构化形式存在。 数据存储与处理:系统利用Hadoop分布式文件系统(HDFS)存储采集到的招聘数据,并使用Hadoop生态圈中的工具(如Hive、HBase等)进行数据处理和管理。Spark作为数据处理引擎,提供高性能的批处理和实时计算能力,对招聘数据进行清洗、转换和特征提取等操作。 招聘推荐:系统利用Spark的机器学习库(如MLlib)构建候选模型,通过对求职者的个人资料、工作经历、技能等特征进行分析,匹配合适的职位和公司。系统可以根据用户的偏好和需求,向其推荐最相关的招聘信息。 可视化展示:系统利用可视化工具(如matplotlib、Plotly等)将招聘数据以各种图表、图形等形式可视化展示。
2025-12-29 02:30:06 191.07MB hadoop spark 毕业设计
1
标题基于Python的个性化书籍推荐管理系统研究AI更换标题第1章引言介绍个性化书籍推荐系统的背景、研究意义、当前研究现状以及本文的研究方法和创新点。1.1研究背景与意义阐述个性化推荐在书籍管理中的重要性及其对用户体验的影响。1.2国内外研究现状概述当前个性化书籍推荐系统的发展状况和存在的问题。1.3论文方法与创新点介绍本文采用的研究方法以及在个性化书籍推荐方面的创新之处。第2章相关理论阐述个性化推荐系统的基础理论和相关技术。2.1推荐算法概述介绍常用的推荐算法及其优缺点。2.2Python在推荐系统中的应用探讨Python在构建个性化推荐系统中的作用和优势。2.3用户画像与书籍特征提取分析如何提取用户兴趣和书籍特征,以便进行精准推荐。第3章系统设计详细描述基于Python的个性化书籍推荐管理系统的设计方案。3.1系统架构与功能模块介绍系统的整体架构以及各个功能模块的作用。3.2推荐算法实现详细阐述推荐算法在系统中的具体实现过程。3.3用户界面与交互设计分析系统的用户界面设计和用户交互流程。第4章系统实现与测试介绍系统的具体实现过程以及测试方法和结果。4.1系统实现细节阐述系统的开发环境、技术选型以及关键代码实现。4.2系统测试与性能评估介绍系统的测试方法、性能指标以及测试结果分析。第5章应用案例分析通过具体案例展示个性化书籍推荐管理系统的实际应用效果。5.1案例背景与数据准备介绍案例的背景以及数据准备过程。5.2推荐效果展示与分析展示系统在实际应用中的推荐效果,并进行详细分析。5.3用户反馈与改进建议收集并分析用户对系统的反馈意见,提出改进建议。第6章结论与展望总结本文的研究成果,并对未来研究方向进行展望。6.1研究结论概括本文的主要研究内容和取得的成果。6.2研究展望分析当前研究的局限性,提出未来可能的研究方向和改进措施。
2025-12-28 16:32:59 100.35MB python django vue mysql
1
该网站是一个社交网络平台,也是一个提供旅行攻略、游记、景点介绍、交通信息等旅行相关内容的网站。它为用户提供了丰富的旅行信息,包括国内外的旅游目的地、景点推荐、旅行攻略、游记分享等。用户可以在该网站上查找各地的旅游信息,了解当地的风土人情、美食、住宿等,还可以和其他旅行爱好者交流互动,分享旅行经验和建议。 雪花旅游网还提供了一个在线社区,让用户可以在其中发布问题、交流意见、寻找旅行伙伴等。用户可以在穷游网上找到其他旅行者的游记和攻略,以及他们的旅行经验和建议,从而更好地计划自己的旅行。 此外,雪花旅游网还提供了一些旅行工具,例如机票查询、酒店预订、签证办理等,方便用户在旅行过程中进行相关的预订和安排。 总的来说,雪花旅游网是一个以旅行为主题的社交网络平台和旅行指南,为旅行者提供了丰富的信息和资源,帮助他们更好地规划和享受旅行。
2025-12-21 00:39:52 7.01MB html
1
龙达IC卡数据分析工具是一款专门针对IC卡数据进行分析处理的软件应用,它能够帮助用户快速解读IC卡内的数据信息,以便于进行进一步的数据挖掘和管理。该工具的推荐使用,表明它可能在数据处理能力、用户友好性、或者功能多样性方面具有一定的优势。 IC卡,又称智能卡,是一种集成电路卡,广泛应用于身份识别、金融交易、交通出行等多个领域。IC卡中储存着大量重要信息,对其进行有效分析可以帮助企业和组织更好地管理数据资源,提高运营效率,以及保障数据安全。 数据分析工具通常是为了解决特定的数据处理需求而设计的软件应用。一个优秀的数据分析工具往往具备以下特点:直观的操作界面,能够快速导入和导出数据;强大的数据处理能力,包含数据清洗、格式转换、统计分析等功能;安全性能良好,保护数据不被非法访问或泄漏;以及具备一定的扩展性,能够适应未来数据处理需求的变化。 从给出的文件信息来看,我们无法得知该IC卡数据分析工具的具体功能和性能,但由于其被推荐使用,我们可以合理推测该工具在操作便捷性、分析效率、结果准确性等方面具有一定的用户认可度。此外,文件中的.exe扩展名表明这是一个可执行文件,这意味着用户在安装和运行该工具时,需要在兼容的操作系统上执行这一安装程序,以确保软件能正常使用。 该工具的具体应用范围可能很广,从简单的IC卡数据读取到复杂的数据分析和报告生成,都能够涵盖。企业用户可能会利用这类工具进行员工考勤记录分析、门禁系统数据管理,或者交通卡使用情况的统计分析。对于金融行业而言,IC卡数据的分析可以帮助处理信用卡欺诈检测、交易记录的审计追踪等任务。 一个强大的IC卡数据分析工具对于相关行业的数据处理工作具有重要意义。它不仅能够提高数据处理的效率,而且有助于用户深入理解和利用IC卡中的数据资源,从而在业务管理和服务提供中获得更多的价值。
2025-12-13 21:58:44 4.68MB
1
这个是Android Studio用的主题,AS基于IntelliJ IDEA,所以IntelliJ IDEA的主题AS都可以用,下载之后import到AS即可。
2025-12-05 16:07:00 2KB Anroid Studio 主题背景
1
vs2022安装包,推荐安装社区版
2025-11-30 21:52:19 3.77MB vs
1
这个是完整源码 python实现 Flask,vue 【python毕业设计】基于Python的深度学习豆瓣电影数据可视化+情感分析推荐系统(Flask+Vue+LSTM+scrapy爬虫)源码+论文+sql脚本 完整版 数据库是mysql 本项目旨在基于深度学习LSTM(Long Short-Term Memory)模型,基于python编程语言,Vue框架进行前后端分离,结合机器学习双推荐算法、scrapy爬虫技术、PaddleNLP情感分析以及可视化技术,构建一个综合的电影数据爬虫可视化+NLP情感分析推荐系统。通过该系统,用户可以获取电影数据、进行情感分析,并获得个性化的电影推荐,从而提升用户体验和满足用户需求。 首先,项目将利用scrapy爬虫框架从多个电影网站上爬取丰富的电影数据,包括电影名称、类型、演员信息、剧情简介等。这些数据将被存储并用于后续的分析和推荐。接着,使用PaddleNLP情感分析技术对用户评论和评分数据进行情感倾向性分析,帮助用户更全面地了解电影的受欢迎程度和评价。 在推荐系统方面,项目将结合深度学习LSTM模型和机器学习双推荐算法,实现个性化的电影推荐。 LSTM模型将用于捕捉用户的浏览和评分行为序列,从而预测用户的兴趣和喜好;双推荐算法则综合考虑用户的历史行为和电影内容特征,为用户提供更精准的推荐结果。此外,项目还将注重可视化展示,通过图表、图形等形式展示电影数据的统计信息和情感分析结果,让用户直观地了解电影市场趋势和用户情感倾向。同时,用户也可以通过可视化界面进行电影搜索、查看详情、评论互动等操作,提升用户交互体验。 综上所述,本项目将集成多种技术手段,构建一个功能强大的电影数据爬虫可视化+NLP情感分析推荐系统,为用户提供全方位的电影信息服务和个性化推荐体验。通过深度学习、机器学习和数据挖掘等技术的应用,该系统有望成为电影爱好者和观众们
2025-11-24 09:22:40 80.49MB LSTM 电影分析 可视化
1
基于Hadoop+Spark招聘推荐可视化系统 大数据项目 毕业设计(源码下载) 基于Hadoop+Spark的招聘推荐可视化系统是一种利用Hadoop和Spark等大数据处理技术,实现招聘推荐和可视化展示的应用系统。以下是该系统的主要介绍: 数据采集:系统通过各种渠道(如招聘网站、社交媒体等)获取大量的招聘相关数据,包括职位信息、公司信息、求职者信息等。这些数据以结构化或半结构化形式存在。 数据存储与处理:系统利用Hadoop分布式文件系统(HDFS)存储采集到的招聘数据,并使用Hadoop生态圈中的工具(如Hive、HBase等)进行数据处理和管理。Spark作为数据处理引擎,提供高性能的批处理和实时计算能力,对招聘数据进行清洗、转换和特征提取等操作。 招聘推荐:系统利用Spark的机器学习库(如MLlib)构建候选模型,通过对求职者的个人资料、工作经历、技能等特征进行分析,匹配合适的职位和公司。系统可以根据用户的偏好和需求,向其推荐最相关的招聘信息。 可视化展示:系统利用可视化工具(如matplotlib、Plotly等)将招聘数据以各种图表、图形等形式可视化展示。例如,
2025-11-23 18:25:05 191.07MB hadoop spark 毕业设计
1