近期,小北参与了华为昇腾CANN训练营2024第二季的学习,这次训练营聚焦于Ascend C算子开发能力认证(中级),为我提供了一个深入学习昇腾AI基础软硬件平台的机会。通过系统的课程学习和实践操作,我不仅掌握了算子开发的基本技能,还了解了昇腾原生开发的全流程,这对于小北在大数据和AI领域的进一步研究具有重要意义。
2024-11-21 21:49:09 4.38MB AI
1
在本项目中,“Volve-field-machine-learning”是一个专注于利用机器学习技术分析北海Volve油田的公开数据集的实践案例。2018年,挪威石油公司Equinor出于促进学术和工业研究的目的,发布了这个丰富的数据集,为油气田的研究带来了新的机遇。这个数据集包含了与地下地质特征、油田运营及生产相关的各种信息,为研究人员提供了深入理解油气田开采过程的宝贵资源。 Volve油田的数据集涵盖了多个方面,包括地质模型、地震数据、井测数据、生产历史等。这些数据可以用于训练和验证机器学习模型,以解决诸如储量估计、产量预测、故障检测等油气田管理中的关键问题。通过机器学习,我们可以挖掘出隐藏在大量复杂数据中的模式和规律,从而优化生产决策和提高效率。 在探索这个数据集时,Jupyter Notebook被用作主要的分析工具。Jupyter Notebook是一款交互式计算环境,支持编写和运行Python代码,非常适合数据预处理、可视化和建模工作。用户可以在同一个环境中进行数据探索、编写模型和展示结果,使得整个分析过程更为直观和透明。 在这个项目中,可能涉及的机器学习方法包括监督学习、无监督学习以及深度学习。例如,监督学习可以用来建立产量预测模型,其中历史产量作为目标变量,而地质特征、井参数等作为输入变量;无监督学习如聚类分析可以用于识别相似的井或地质区域,以便进行更精细化的管理;深度学习模型如卷积神经网络(CNN)可以处理地震数据,提取地下结构的特征。 在Volve-field-machine-learning-main文件夹中,很可能包含了一系列的Jupyter Notebook文件,每个文件对应一个特定的分析任务或机器学习模型。这些文件将详细记录数据清洗、特征工程、模型选择、训练过程以及结果评估的步骤。通过阅读和复现这些Notebook,读者可以学习到如何将机器学习应用于实际的油气田数据,并从中获得对数据驱动决策的理解。 这个项目为油气行业的研究者和工程师提供了一个实战平台,通过运用机器学习技术,他们能够深入理解和优化Volve油田的运营,同时也为其他类似油田的数据分析提供了参考。随着大数据和人工智能技术的不断发展,这种数据驱动的决策方式将在未来的能源行业中发挥越来越重要的作用。
2024-09-10 15:22:37 7.93MB JupyterNotebook
1
探索微软新VLM Phi-3 Vision模型:详细分析与代码示例
2024-09-05 16:37:38 7KB
1
台湾数据土壤地图项目 这是我的硕士论文研究,主要讨论台湾土壤数据库的应用。 包括数据可视化,土属性非线性函数转换,模型仿真和探索性分析。
2024-07-31 13:27:36 124KB JupyterNotebook
1
提出了一种用于计算大型强子对撞机所有主要tau强子衰变事件中微子的新方法。 这是可能的,因为如今可以使用更好的检测器描述。 通过中微子的完全重建,可以计算每个事件的矩阵元素,还可以高精度地逐个事件计算希格斯粒子的质量。 基于这些,分析了在大型强子对撞机中测量h→ττ衰减的希格斯CP混合角的前景。 可以预测,通过详细的检测器模拟,在s = 13 TeV时具有3 ab $ ^ {-1} $的数据,CP混合角的测量值可以显着提高到5.2∘。 LHC的性能优于hpτ耦合中迄今为止对轻子EDM搜索的灵敏度。
2024-07-19 11:04:59 461KB Open Access
1
我们研究了通用的Zee模型,其中包括一个额外的希格斯标量双峰和一个新的单电荷标量单峰。 中微子质量在单回路水平产生,为了描述轻子混合,标准模型和额外的希格斯标量双峰都需要与轻子耦合(在III型两希格斯双峰模型中),这必然产生大的 希普斯衰变中也有违反轻子味的信号。 施加所有相关的现象学约束并对参数空间进行完整的数值扫描,我们发现正常和反向中微子质量排序都可以拟合,尽管后者相对于前者而言是不利的。 实际上,仅当θ23出现在第一个八分圆中时,才能适应反向排序。 h→τμ的支化比最高为10 -2,但可能低至10 -6。 此外,如果将来达到τ→μγ的预期灵敏度,则可以几乎完全测试正常排序。 同样,μe转换有望探查大部分参数空间,如果未观察到信号,则排除完全倒序。 此外,发现非标准中微子相互作用小于10 -6,远低于未来的实验灵敏度。 最后,我们的扫描结果表明附加标量的质量必须低于2。 5 TeV,通常低于这个水平,因此在大型强子对撞机和未来对撞机的范围内。
2024-07-18 22:06:50 1.09MB Open Access
1
使用Yelp评论进行情感分类python程序源代码TSNE和PCA探索单词表示LSTM模型LinearSVC,BernoulliNB,MLPClassifier 情感分类情感分类是情感分类的项目。(以Yelp审查为输入)资料资源什么是新的3.1探索其他数字特征(而不是仅文本)利用“有用”信息(由yelp提供的属性)进行weighted samples实验使用“均值”处理缺失值2.4伯特转移学习建立和调整bert模型。可视化数据分配2.3改变表达句子向量的方式建立和调整LSTM模型。2.2建立和调整LinearSVC模型。建立和调整BernoulliNB模型。建立和调整MLPClassifier模型。建立和调整LogisticRegression模型。建立和调整DecisionTree模型。2.1使用W2F创建情感分类训练word representation模型使用TSNE和PCA探索单词表示1.1使用tf-idf创建情感分类建立和调整LinearSVC模型。 使用Yelp评论进行情感分类python程序源代码TSNE和PCA探索单词表示LSTM模型LinearSVC,B.zi
2024-05-28 20:19:57 1.52MB python lstm
1
基于正点原子探索者STM32F407,双线性插值算法,直接在原子的屏幕上显示,2.8,3.5,4.3都可以直接显示不需要改任何代码
2024-05-28 15:27:55 6.89MB
深度探索Linux操作系统:系统构建和原理解析 第1章介绍了如何准备工作环境。在第2章中构建了编译工具链,这是后面构建操作系统各个组件的基础。在这一章中,不仅详细讲解了工具链的构建过程,而且还通过对编译链接过程的探讨,深入讨论了工具
2024-05-18 05:44:55 4.21MB 操作系统
1
所使用的是正点原子探索者开发板,其他同理,改动代码就行,效果详见B站链接https://www.bilibili.com/video/BV1dB4y1k7XN/?spm_id_from=333.999.0.0&vd_source=06d06192a2ff6643ccdab6c1aeae235b
2024-05-05 17:49:30 7.77MB stm32 图像处理 二值化
1