书名:《Android底层开发技术实战详解——内核、移植和驱动》(电子工业出版社.王丽)。本书从底层原理开始讲起,结合真实的案例向读者详细介绍了android内核、移植和驱动开发的整个流程。全书分为19章,依次讲解驱动移植的必要性,何为hal层深入分析,goldfish、msm、map内核和驱动解析,显示系统、输入系统、动器系统、音频系统、视频输出系统的驱动,openmax多媒体、多媒体插件框架,传感器、照相机、wi-fi、蓝牙、gps和电话系统等。在每一章中,重点介绍了与Android驱动开发相关的底层知识,并对Android源码进行了剖析。 本书适合Android研发人员及Android爱好者学习,也可以作为相关培训学校和大专院校相关专业的教学用书。 全书压缩打包成3部分,这是第1部分。 目录: 第1章 Android底层开发基础 1 1.1 什么是驱动 1 1.1.1 驱动程序的魅力 1 1.1.2 电脑中的驱动 2 1.1.3 手机中的驱动程序 2 1.2 开源还是不开源的问题 3 1.2.1 雾里看花的开源 3 1.2.2 从为什么选择java谈为什么不开源驱动程序 3 1.2.3 对驱动开发者来说是一把双刃剑 4 1.3 Android和Linux 4 1.3.1 Linux简介 5 1.3.2 Android和Linux的关系 5 1.4 简析Linux内核 8 1.4.1 内核的体系结构 8 1.4.2 和Android密切相关的Linux内核知识 10 1.5 分析Linux内核源代码很有必要 14 1.5.1 源代码目录结构 14 1.5.2 浏览源代码的工具 16 1.5.3 为什么用汇编语言编写内核代码 17 1.5.4 Linux内核的显著特性 18 1.5.5 学习Linux内核的方法 26 第2章 分析Android源代码 31 2.1 搭建Linux开发环境和工具 31 2.1.1 搭建Linux开发环境 31 2.1.2 设置环境变量 32 2.1.3 安装编译工具 32 2.2 获取Android源代码 33 2.3 分析并编译Android源代码 35 2.3.1 Android源代码的结构 35 2.3.2 编译Android源代码 40 2.3.3 运行Android源代码 42 2.3.4 实践演练——演示编译Android程序的两种方法 43 2.4 编译Android kernel 47 2.4.1 获取goldfish内核代码 47 2.4.2 获取msm内核代码 50 2.4.3 获取omap内核代码 50 2.4.4 编译Android的Linux内核 50 2.5 运行模拟器 52 2.5.1 Linux环境下运行模拟器的方法 53 2.5.2 模拟器辅助工具——adb 54 第3章 驱动需要移植 57 3.1 驱动开发需要做的工作 57 3.2 Android移植 59 3.2.1 移植的任务 60 3.2.2 移植的内容 60 3.2.3 驱动开发的任务 61 3.3 Android对Linux的改造 61 3.3.1 Android对Linux内核文件的改动 62 3.3.2 为Android构建 Linux的操作系统 63 3.4 内核空间和用户空间接口是一个媒介 64 3.4.1 内核空间和用户空间的相互作用 64 3.4.2 系统和硬件之间的交互 64 3.4.3 使用relay实现内核到用户空间的数据传输 66 3.5 三类驱动程序 70 3.5.1 字符设备驱动程序 70 3.5.2 块设备驱动程序 79 3.5.3 网络设备驱动程序 82 第4章 hal层深入分析 84 4.1 认识hal层 84 4.1.1 hal层的发展 84 4.1.2 过去和现在的区别 86 4.2 分析hal层源代码 86 4.2.1 分析hal moudle 86 4.2.2 分析mokoid工程 89 4.3 总结hal层的使用方法 98 4.4 传感器在hal层的表现 101 4.4.1 hal层的sensor代码 102 4.4.2 总结sensor编程的流程 104 4.4.3 分析sensor源代码看Android api 与硬件平台的衔接 104 4.5 移植总结 116 4.5.1 移植各个Android部件的方式 116 4.5.2 移植技巧之一——不得不说的辅助工作 117 第5章 goldfish下的驱动解析 125 5.1 staging驱动 125 5.1.1 staging驱动概述 125 5.1.2 binder驱动程序 126 5.1.3 logger驱动程序 135 5.1.4 lowmemorykiller组件 136 5.1.5 timed output驱动程序 137 5.1.6 timed gpio驱动程序 139 5.1.7 ram console驱动程序 139 5.2 wakelock和early_suspend 140 5.2.1 wakelock和early_suspend的原理 140 5.2.2 Android休眠 141 5.2.3 Android唤醒 144 5.3 ashmem驱动程序 145 5.4 pmem驱动程序 148 5.5 alarm驱动程序 149 5.5.1 alarm简析 149 5.5.2 alarm驱动程序的实现 150 5.6 usb gadget驱动程序151 5.7 Android paranoid驱动程序153 5.8 goldfish设备驱动154 5.8.1 framebuffer驱动155 5.8.2 键盘驱动159 5.8.3 实时时钟驱动程序160 5.8.4 tty终端驱动程序161 5.8.5 nandflash驱动程序162 5.8.6 mmc驱动程序162 5.8.7 电池驱动程序162 第6章 msm内核和驱动解析164 6.1 msm基础164 6.1.1 常见msm处理器产品164 6.1.2 snapdragon内核介绍165 6.2 移植msm内核简介166 6.3 移植msm168 6.3.1 makefile文件168 6.3.2 驱动和组件170 6.3.3 设备驱动172 6.3.4 高通特有的组件174 第7章 omap内核和驱动解析177 7.1 omap基础177 7.1.1 omap简析177 7.1.2 常见omap处理器产品177 7.1.3 开发平台178 7.2 omap内核178 7.3 移植omap体系结构180 7.3.1 移植omap平台180 7.3.2 移植omap处理器183 7.4 移植Android专用驱动和组件188 7.5 omap的设备驱动190 第8章 显示系统驱动应用195 8.1 显示系统介绍195 8.1.1 Android的版本195 8.1.2 不同版本的显示系统195 8.2 移植和调试前的准备196 8.2.1 framebuffer驱动程序196 8.2.2 硬件抽象层198 8.3 实现显示系统的驱动程序210 8.3.1 goldfish中的framebuffer驱动程序210 8.3.2 使用gralloc模块的驱动程序214 8.4 msm高通处理器中的显示驱动实现224 8.4.1 msm中的framebuffer驱动程序225 8.4.2 msm中的gralloc驱动程序227 8.5 omap处理器中的显示驱动实现235 第9章 输入系统驱动应用239 9.1 输入系统介绍239 9.1.1 Android输入系统结构元素介绍239 9.1.2 移植Android输入系统时的工作240 9.2 input(输入)驱动241 9.3 模拟器的输入驱动256 9.4 msm高通处理器中的输入驱动实现257 9.4.1 触摸屏驱动257 9.4.2 按键和轨迹球驱动264 9.5 omap处理器平台中的输入驱动实现266 9.5.1 触摸屏驱动267 9.5.2 键盘驱动267 第10章 动器系统驱动269 10.1 动器系统结构269 10.1.1 硬件抽象层271 10.1.2 jni框架部分272 10.2 开始移植273 10.2.1 移植动器驱动程序273 10.2.2 实现硬件抽象层274 10.3 在msm平台实现动器驱动275 第11章 音频系统驱动279 11.1 音频系统结构279 11.2 分析音频系统的层次280 11.2.1 层次说明280 11.2.2 media库中的audio框架281 11.2.3 本地代码284 11.2.4 jni代码288 11.2.5 java代码289 11.3 移植audio系统的必备技术289 11.3.1 移植audio系统所要做的工作289 11.3.2 分析硬件抽象层290 11.3.3 分析audioflinger中的audio硬件抽象层的实现291 11.4 真正实现audio硬件抽象层298 11.5 msm平台实现audio驱动系统298 11.5.1 实现audio驱动程序298 11.5.2 实现硬件抽象层299 11.6 oss平台实现audio驱动系统304 11.6.1 oss驱动程序介绍304 11.6.2 mixer305 11.7 alsa平台实现audio系统312 11.7.1 注册音频设备和音频驱动312 11.7.2 在Android中使用alsa声卡313 11.7.3 在omap平台移植Android的alsa声卡驱动322 第12章 视频输出系统驱动326 12.1 视频输出系统结构326 12.2 需要移植的部分328 12.3 分析硬件抽象层328 12.3.1 overlay系统硬件抽象层的接口328 12.3.2 实现overlay系统的硬件抽象层331 12.3.3 实现接口332 12.4 实现overlay硬件抽象层333 12.5 在omap平台实现overlay系统335 12.5.1 实现输出视频驱动程序335 12.5.2 实现overlay硬件抽象层337 12.6 系统层调用overlay hal的架构342 12.6.1 调用overlay hal的架构的流程342 12.6.2 s3c6410 Android overlay的测试代码346 第13章 openmax多媒体框架349 13.1 openmax基本层次结构349 13.2 分析openmax框架构成350 13.2.1 openmax总体层次结构350 13.2.2 openmax il层的结构351 13.2.3 Android中的openmax354 13.3 实现openmax il层接口354 13.3.1 openmax il层的接口354 13.3.2 在openmax il层中需要做什么361 13.3.3 研究Android中的openmax适配层361 13.4 在omap平台实现openmax il363 13.4.1 实现文件364 13.4.2 分析ti openmax il的核心365 13.4.3 实现ti openmax il组件实例368 第14章 多媒体插件框架373 14.1 Android多媒体插件373 14.2 需要移植的内容374 14.3 opencore引擎375 14.3.1 opencore层次结构375 14.3.2 opencore代码结构376 14.3.3 opencore编译结构377 14.3.4 opencore oscl381 14.3.5 实现opencore中的openmax部分383 14.3.6 opencore的扩展398 14.4 stagefright引擎404 14.4.1 stagefright代码结构404 14.4.2 stagefright实现openmax接口405 14.4.3 video buffer传输流程409 第15章 传感器系统415 15.1 传感器系统的结构415 15.2 需要移植的内容417 15.2.1 移植驱动程序417 15.2.2 移植硬件抽象层418 15.2.3 实现上层部分419 15.3 在模拟器中实现传感器424 第16章 照相机系统430 16.1 camera系统的结构430 16.2 需要移植的内容433 16.3 移植和调试433 16.3.1 v4l2驱动程序433 16.3.2 硬件抽象层441 16.4 实现camera系统的硬件抽象层446 16.4.1 java程序部分446 16.4.2 camera的java本地调用部分447 16.4.3 camera的本地库libui.so448 16.4.4 camera服务libcameraservice.so449 16.5 msm平台实现camera系统454 16.6 omap平台实现camera系统457 第17章 wi-fi系统、蓝牙系统和gps系统459 17.1 wi-fi系统459 17.1.1 wi-fi系统的结构459 17.1.2 需要移植的内容461 17.1.3 移植和调试461 17.1.4 omap平台实现wi-fi469 17.1.5 配置wi-fi的流程471 17.1.6 具体演练——在Android下实现ethernet473 17.2 蓝牙系统475 17.2.1 蓝牙系统的结构475 17.2.2 需要移植的内容477 17.2.3 具体移植478 17.2.4 msm平台的蓝牙驱动480 17.3 定位系统482 17.3.1 定位系统的结构483 17.3.2 需要移植的内容484 17.3.3 移植和调试484 第18章 电话系统498 18.1 电话系统基础498 18.1.1 电话系统简介498 18.1.2 电话系统结构500 18.2 需要移植的内容501 18.3 移植和调试502 18.3.1 驱动程序502 18.3.2 ril接口504 18.4 电话系统实现流程分析507 18.4.1 初始启动流程507 18.4.2 request流程509 18.4.3 response流程512 第19章 其他系统514 19.1 alarm警报器系统514 19.1.1 alarm系统的结构514 19.1.2 需要移植的内容515 19.1.3 移植和调试516 19.1.4 模拟器环境的具体实现518 19.1.5 msm平台实现alarm518 19.2 lights光系统519 19.2.1 lights光系统的结构520 19.2.2 需要移植的内容521 19.2.3 移植和调试521 19.2.4 msm平台实现光系统523 19.3 battery电池系统524 19.3.1 battery系统的结构524 19.3.2 需要移植的内容526 19.3.3 移植和调试526 19.3.4 在模拟器中实现电池系统529
2025-10-18 17:27:53 45MB Android
1
如何使用Matlab代码实现环境动数据的1/3倍频程和最大Z级分析。文中首先阐述了动分析在环境监测和建筑声学领域的背景及其重要性,接着给出了具体实现步骤,包括数据加载、1/3倍频程和最大Z级的计算、批量处理多点数据,并最终将所有数据和图片保存到指定文件夹。此外,作者还强调了一键操作的设计理念,使得非专业用户也可以轻松完成复杂的动数据分析任务。最后,文章展示了通过这种自动化方式获得的结果,并讨论了其在噪声控制等方面的应用价值。 适合人群:从事环境监测、建筑声学等相关领域的工程师和技术人员,尤其是那些希望提高工作效率、减少手动操作的人群。 使用场景及目标:适用于需要频繁进行动数据分析的工作场合,旨在简化数据处理流程,提供直观的图表展示,帮助用户更好地理解和应对环境动问题。 其他说明:文中提供的代码仅为示意框架,实际应用时需根据具体情况调整相关函数的具体实现。
2025-09-28 13:34:47 1.06MB
1
内容概要:本文详细介绍了利用Matlab进行环境动数据处理的方法,重点讲解了1/3倍频程分析和最大Z级计算的具体实现。文中提供了完整的Matlab代码,能够实现批量处理多个测点的数据,并自动生成详细的分析结果和图表。通过使用Butterworth滤波器和滑动窗口策略,确保了数据处理的高效性和准确性。此外,代码还实现了自动化保存功能,将所有结果和图片整理并保存到指定文件夹中。 适合人群:从事环境动监测、噪声控制以及相关领域的工程师和技术人员,尤其是那些希望提高工作效率、减少重复劳动的专业人士。 使用场景及目标:适用于需要频繁处理大量动数据的场合,如交通基础设施建设、工业厂房动评估等。主要目标是提供一种快速、准确、自动化程度高的数据处理解决方案,帮助用户节省时间和精力。 其他说明:文中提到的代码不仅涵盖了核心的1/3倍频程分析和最大Z级计算,还包括了数据预处理、结果保存等多个实用功能。同时,作者还给出了具体的优化建议,如调整滤波器阶数、选择合适的采样率等,以应对不同应用场景的需求。
2025-09-28 13:33:44 101KB
1
《基于脉高频电压注入的永磁同步电机无速度传感器控制》 在现代工业自动化领域,永磁同步电机(PMSM)因其高效率、高功率密度和良好的动态性能而被广泛应用。然而,在某些场合,如航空航天、电动汽车等,由于环境限制或成本考虑,无法安装传统的机械速度传感器。为解决这一问题,基于脉高频电压注入的无速度传感器控制技术应运而生。 脉高频电压注入法是一种无速度传感器控制策略,其基本思想是通过向电机的定子绕组中注入特定频率的高频信号,利用电机内部的电磁耦合效应来检测电机的转子位置和速度信息。这种方法的核心在于,高频信号会在电机内部产生一个附加的磁场分量,进而改变电机的电气特性。通过测量这些变化,可以推断出电机的实时状态。 在实现这一技术的过程中,首先需要理解高频电压注入的原理。"脉高频电压注入法原理说明.pdf"这份文档详细解释了这一过程。它可能会涵盖以下几点: 1. 高频电压的生成:通常采用调制技术,如脉宽调制(PWM),将高频信号与基波电压相混合。 2. 信号注入:将高频信号注入到电机定子绕组中,形成瞬时的磁链波动。 3. 信号感应:转子运动导致的磁路变化会改变高频信号的感应效果,通过检测这一变化可以获取转子位置信息。 4. 信号处理:对感应到的高频信号进行滤波和解调,提取出转子速度信息。 "parameters.m"文件可能是控制算法中的参数设置,包括电机的电气参数(如电感、电阻、磁链等)、高频电压的幅值、频率和调制方式等。这些参数的选择直接影响到控制系统的稳定性和精度。 "运行说明.txt"文件可能包含了实验操作步骤和注意事项,比如如何配置MATLAB/Simulink环境,如何加载"FInjection_SVPWM_2018b.slx"模型,以及如何进行仿真和实际电机测试。Simulink模型是实现这种控制策略的工具,通过搭建包含高频电压注入模块的控制系统,可以模拟电机的运行并验证控制算法的性能。 "【参考文献】基于脉高频电压注入的永磁同步电机无速度传感器控制.pdf"是深入研究该技术的重要资源,可能包含更深入的理论分析、实验结果和控制策略的优化方法。 基于脉高频电压注入的永磁同步电机无速度传感器控制技术是一种先进的电机控制策略,涉及到信号注入、感应和处理等多个环节,通过合理设置参数和使用适当的控制算法,能够在没有速度传感器的情况下实现电机的精确控制。这项技术的应用对于提高系统的可靠性、降低成本和简化系统结构具有重要意义。
2025-09-14 20:57:29 1.03MB
1
内容概要:本文探讨了利用脉高频电压信号注入法对永磁同步电机(PMSM)进行无位置传感器控制的仿真研究。文章基于袁雷《现代永磁同步电机控制原理及MATLAB》一书,详细介绍了PMSM模型的搭建过程,重点解决了低速启动时转子位置误差较大的问题。通过在MATLAB环境下构建仿真模型,将脉高频电压信号注入到电机定子绕组中,根据电机响应估计转子位置,从而提高低速启动时的精度。文中还展示了具体的代码实现,并讨论了该方法的优点和局限性。 适合人群:从事电机控制领域的研究人员和技术人员,特别是关注PMSM无位置传感器控制及其低速性能优化的专业人士。 使用场景及目标:适用于希望深入了解PMSM无位置传感器控制技术的研究人员,旨在通过仿真手段优化低速启动时的转子位置检测精度,提升电机控制系统的稳定性与可靠性。 其他说明:尽管仿真结果显示了良好的效果,但在实际应用中仍需进一步验证和优化。此外,该方法在高频噪声或干扰较多的环境中可能存在局限性。
2025-09-14 20:49:28 606KB
1
基于脉高频电压注入的永磁同步电机(PMSM)无感FOC技术,重点讨论了转子初始位置检测、带载起动和突加负载运行的实现方法。文中首先阐述了无感FOC技术的工作原理及其在现代电机控制中的重要性,随后深入分析了转子初始位置检测的具体方法——极性判断法,确保电机可以在任意初始位置下顺利启动并稳定运行。此外,文章还探讨了如何通过调整电压波形、频率和幅值来实现对电机负载状态的有效控制,从而满足工业生产的需求。最后,作者提供了相关的算法参考文献和仿真模型,帮助读者更好地理解和掌握这一技术。 适合人群:从事电机控制系统设计与开发的技术人员,尤其是对永磁同步电机无感FOC技术感兴趣的工程师和研究人员。 使用场景及目标:适用于需要深入了解和应用永磁同步电机无感FOC技术的研发项目,如工业自动化设备、电动汽车等领域。目标是提高电机系统的效率、可靠性和适应性。 其他说明:提供的仿真模型为纯手工搭建,具有较高的学习和参考价值,但仅限于学术研究和个人学习使用。
2025-09-14 20:46:12 317KB
1
内容概要:本文详细介绍了基于脉高频电压注入的永磁同步电机(PMSM)无感FOC技术,重点讨论了转子初始位置检测和负载适应性的实现方法。通过极性判断方法,可以在任意初始位置下实现无感起动运行,确保电机的高启动性能和快速响应。此外,该技术能够有效应对带载起动和突加负载的情况,通过调整电压波形、频率和幅值,实现对电机负载状态的动态调节。文中还提供了相关算法的参考文献和纯手工搭建的仿真模型,帮助读者深入理解无感FOC技术的工作原理及其应用。 适合人群:从事电机控制系统设计的研发人员、高校师生及相关领域的研究人员。 使用场景及目标:适用于需要深入了解永磁同步电机无感FOC技术原理及其应用的场合,如工业自动化、电动汽车等领域。目标是提升电机系统的性能、稳定性和能效。 其他说明:提供的仿真模型仅用于学习和参考,不应用于实际产品开发。
2025-09-14 20:44:48 317KB
1
内容概要:本文介绍了脉高频电压注入法在永磁同步电机(PMSM)中用于转子位置及转速估算的应用及其Simulink仿真。首先解释了脉高频电压注入法的工作原理,即通过在电机定子绕组中注入高频正弦电压信号,利用电机交直轴高频阻抗的凸极效应,处理计算电机绕组端电流,从而准确计算出电机的转子位置和转速。接着,文章详细描述了在Simulink中进行仿真的步骤,包括搭建永磁同步电机模型、添加脉高频电压注入模块、调制解调模块以及结果分析。最后,通过仿真结果验证了该方法的有效性,展示了其在无速度传感器控制方面的优势。 适合人群:从事电机控制、自动化工程及相关领域的研究人员和技术人员,尤其是对永磁同步电机控制有深入了解的需求者。 使用场景及目标:适用于需要提高永磁同步电机控制精度和可靠性的情况,特别是在无法安装物理速度传感器的情况下,通过仿真验证和优化脉高频电压注入法的实际应用。 其他说明:文中提供了详细的仿真步骤和代码框架,有助于读者理解和复现实验过程。同时,还列出了相关的参考文献和原理说明文档,方便进一步深入研究。
2025-09-14 20:43:12 862KB
1
中 TP900工具和驱动文件2.2(简版)
2025-08-24 00:36:04 17.14MB
1
基于matlab的求解悬臂梁前3阶固有频率和型 基于matlab的求解悬臂梁前3阶固有频率和型,采用的方法分别是(假设模态法,解析法,瑞利里兹法) 程序已调通,可直接运行 ,Matlab; 悬臂梁; 固有频率; 型; 假设模态法; 解析法; 瑞利里兹法,Matlab求解悬臂梁固有频率与型程序 在工程领域,悬臂梁作为一种常见的结构形式,其动态特性分析对于结构设计和安全评估至关重要。固有频率和型是表征结构动态特性的两个基本参数。固有频率是指结构在没有外力作用下,仅由其材料和形状所决定的动频率;型则是指在某一固有频率下的动形态。掌握悬臂梁的固有频率和型对于防止共,提高结构安全性和可靠性具有重要意义。 本文档介绍了一种基于Matlab的计算方法,用于求解悬臂梁前三阶固有频率和型。Matlab作为一种强大的数学计算和仿真工具,广泛应用于工程和科研领域。通过Matlab,可以方便地实现复杂算法和数据处理,对于工程问题的求解具有显著优势。 在研究过程中,采用了三种不同的方法来求解悬臂梁的固有频率和型。首先是假设模态法,这种方法通过预先假设一些简单的型,结合能量守恒原理来求解固有频率和型。解析法是通过建立悬臂梁的微分方程,采用数学解析的方法来得到固有频率和型的精确解。瑞利-里兹法是一种近似方法,通过选择合适的位移函数来简化问题,进而求得近似的固有频率和型。 程序的开发和调试工作已经完成,可以直接运行,这为工程设计人员提供了一个高效的工具,用于快速准确地计算悬臂梁的前三阶固有频率和型。这一成果不仅对悬臂梁的设计具有指导意义,还可以推广到其他结构的动态特性分析中。 由于悬臂梁在很多工程领域中都有应用,例如桥梁工程、建筑工程和机械工程等,因此本研究的成果具有广泛的应用前景。设计人员可以利用此程序快速评估悬臂梁在不同条件下的动特性,为结构设计提供理论依据,从而提高设计的科学性和合理性。 对于激光熔覆技术而言,其仿真模型案例选用固的介绍也为相关领域的研究提供了参考。激光熔覆是一种材料表面强化技术,广泛应用于航空航天、汽车制造等行业。通过仿真技术,可以在实际加工前预测激光熔覆过程的热物理行为,优化工艺参数,从而达到提高生产效率和产品质量的目的。 文中提到的“istio”标签可能指向的是一种用于微服务架构的技术,这与Matlab和悬臂梁的研究看似无直接关联,但可能表明该文档在某种程度上与技术整合或跨领域应用有关。随着技术的不断发展,跨学科的整合应用成为趋势,这方面的内容可能为研究者提供了新的思路和视角。 在文件的压缩包中,除了本文档外,还包含了多个HTML文件和图片文件。这些文件可能包含了更详细的理论推导、仿真过程、实验结果以及相关的图表和图像。这些资料对于深入理解悬臂梁固有频率和型的计算过程,以及验证Matlab程序的准确性和可靠性都是非常有帮助的。 本文档及相关的文件资料为工程设计人员提供了一套完整的解决方案,用于计算和分析悬臂梁的固有频率和型。这一成果不仅有助于提高结构设计的科学性和可靠性,也促进了跨学科技术的融合与发展。
2025-08-23 16:49:40 1006KB istio
1