惯性导航系统(Inertial Navigation System, 简称INS)中,陀螺仪是一种关键组件,用于测量载体的角速度。陀螺仪的性能直接影响着整个系统的精度和稳定性。"SINS中陀螺比例因子标定matlab程序"是针对这类问题的一个解决方案,它提供了基于MATLAB的标定算法,旨在校准陀螺仪的比例因子,以减少测量误差,提高系统性能。 陀螺比例因子标定是惯性导航系统中的一项重要任务,因为实际的陀螺仪可能会存在非线性、温度漂移和比例因子偏差等问题。比例因子标定的主要目的是找出陀螺仪输出与其实际旋转速率之间的关系,这通常涉及到对陀螺仪进行一系列已知角度输入的测试,然后分析输出数据以确定比例因子。 MATLAB是一种强大的数值计算和数据分析工具,适用于这种标定过程。通过编写MATLAB程序,可以实现数据采集、处理、模型建立和参数估计等功能。该程序可能包括以下步骤: 1. 数据采集:连接陀螺仪,施加一系列已知的角速度输入,记录陀螺仪的输出数据。 2. 数据预处理:对采集的数据进行滤波、平滑等处理,去除噪声和异常值。 3. 建立模型:构建陀螺仪输出与真实角速度的关系模型,这可能是一个线性模型或者包含非线性项。 4. 参数估计:使用MATLAB的优化工具箱或最小二乘法等算法,估计模型中的比例因子和其他参数。 5. 结果验证:将标定后的模型应用于新的数据集,对比实际与预测的角速度,评估标定效果。 惯性导航MATLAB程序可能还包括其他高级功能,如温度补偿、长期稳定性分析等,以适应不同环境条件下的应用。陀螺标定算法的设计和选择会直接影响到标定的精度和效率,因此,理解并优化这些算法至关重要。 "SINS"是 Strapdown Inertial Navigation System 的缩写,指的是将陀螺仪和加速度计直接固定在载体上的惯性导航系统。在SINS中,精确的陀螺仪标定对于实现高精度的自主导航至关重要。 这个压缩包提供的MATLAB程序和相关文档是惯性导航系统开发者和研究人员的重要资源,它可以帮助他们有效地校准陀螺仪,提升系统整体的导航性能。通过深入理解和应用这些内容,可以在实际项目中实现更准确、更可靠的惯性导航
2024-08-11 15:30:40 1.39MB 陀螺标定 SINS
1
SC7I22 是一款高集成度、低功耗惯性测量单元(IMU)。内置高性能三 轴加速度计和三轴陀螺仪测量单元,在高性能模式、SC7I22 集成的节能模 式能将功耗控制在 970uA 以下(ODR 1.6KHz 工作模式)。 加速度计量程范围±2g/±4g/±8g/±16g,陀螺仪的角速度量程可以为 ±125/±250/±500/±1000/±2000dps。包含自测功能和修调功能。SC7I22 的 封装为 LGA-14L,正常工作温度范围为-40°C ~ +85 °C。内置的事件中断功 能可在系统功耗极低的条件下有效可靠得实现运动跟踪和姿态识别,包括自 由落体检测、6D 方向检测、计步、敲击检测和唤醒等功能。 SC7I22 可以提的运动检测,实现姿态定位和手势识别等,帮助应用开 发者开发更加复杂的功能,将大量应用于智能手机、无人机、游戏手柄、各 类物联网和智能硬件系统中。支持主流操作系统,实现微信记录和动作截屏, 且提供无人机、游戏手柄、VR 和 AR 的各类算法支持。 芯片内置自测试功能允许客户系统测试时检测系统功能,省去复杂的转 台测试。芯片内置产品倾斜校准功能,对贴片和板卡安装导致的
2024-04-09 17:05:07 2KB 惯性导航 姿态控制
1
MATLAB组合导航,松组合程序,卫星导航与惯性导航组合程序 GNSS接收机和INS分别独立工作。松组合利用GNSS接收机输出的位置和速度信息和INS经过力学编排后输出的位置和速度信息进行组合,两者共用一个GNSS/INS组合滤波器,双方进行数据融合后得到输出的位置、速度和姿态信息,为后面的实验做好准备。 NSS/INS松组合导航系统中,在INS误差方程的基础上构建系统状态方程和量测方程需要用到卡尔曼滤波器;修正INS观测量从而进一步修改INS随时间累积的误差时也需要用卡尔曼滤波对INS的误差参数进行最小方差估计。这些操作得到的修正后的INS观测量能够提供更加精确的导航信息,从而更好地辅助GNSS系统,提高GNSS系统的稳定性和可行性 首先读取文件存放的GNSS位置、GNSS速度、INS加速度和陀螺仪等信息,初始化相关变量,通过相关的惯性导航传感器信息计算出位置和速度信息,然后将GNSS和INS的位置和速度利用卡尔曼滤波进行处理,最后得到运行结果 以基于MATLAB松组合导航综合设计性实验为例,在此实验内容基础上,可深入结合更多的导航专业课程理论知识,拓展更多实验内容,丰富各种实验手
2024-04-05 04:05:24 54.29MB 卡尔曼滤波
1
STM32F1单片机+MPU6050+HMC5883L+MS5611+四元数欧拉角姿态解算+曲线打印完整工程代码。 STM32F1单片机+四元数欧拉角姿态解算+MPU6050+HMC5883L+MS5611+曲线打印完整工程代码. 燕骏编程规范: https://download.csdn.net/download/zzw5945/10397028 燕骏串口打印曲线上位机: https://download.csdn.net/download/zzw5945/10397194 姿态解算 四元数欧拉角 惯性导航 微信四轴 MPU6050
1
针对嵌入式大气数据系统高空飞行精度低、跨大气层易失效等问题,提出一种融合惯导与飞控系统信息的 飞行大气全参数估计算法.基于飞行器气动模型及动力学方程,建立惯导信息与大气参数之间的函数 关系,进而利用扩展卡尔曼滤波实现大气参数的实时精确估计.仿真结果表明,该方法具有较高的 精度、良好的稳定性和鲁棒性,而且可以提高大气数据系统的测量范围和可靠性,能够适用于全 飞行包线下攻角、侧滑角、真空速的测量.
1
(1)台体运动方程式 在不考虑台体绕稳定轴的阻尼系数和弹性约束的情况下,有 Me(s) α(shTT JpS- 式中 Jp一一台体及其附件相对输出轴的转动惯量。 (2) 浮子积分陀螺仪传递函数 旦旦2 H/C 一旦L α(s)-ts+1-JhG (3) 平台控制器传递函数为系统待选定的参数,设 在 s = 0 时,以 s) = C) 。 (4) 直流力矩电机传递函数 f一 (s二二~一 = G创(sυ) θ (s) 在实际应用中,可认为是一非周期环节 且坠) C2 eμ s) - rs + 1 (5.2. 1) (5.2.2) (5.2.3) (5.2.4) 考虑到浮子积分陀螺仪的陀螺效应,以及引起陀螺漂移的干扰力矩,可忽略力矩电机中的 反电势效应。系统的方块图可由图 5.10 给出。 在第三章我们给出用于捷联惯导系统浮子积分陀螺的一组参数,对于平台系统用浮子积 分陀螺的时间常数 J/C 为毫秒级。对于平台系统所用直流力矩马达,已采用永磁式马达,在一 般工程应用旋转速率下,马达的反电势可以忽略,马达的传递函数还可进一步简化。 1∞ 我们对系统做如下分析。 1.设 Mβ = O , MjY 或 My 不等于零。 由图 5.10 可简化为图 5.11 的形式。
2023-04-02 08:57:41 6.85MB 惯性导航 邓正隆
1
惯性导航》科学出版社秦永元,介绍惯性导航元器件、惯性导航系统
2023-03-31 15:13:52 9.46MB 惯性导航
1
基于MATLAB的捷联惯导单子样算法,还有单子样和卫星数据松组合INS_GPS(经过卡尔曼滤波处理)后的程序,没有附数据。可以用作初学者学习参考,程序内容还是比较完整的。
2023-03-28 19:21:02 17KB matlab 惯性导航 组合导航
1
论文简述了惯性导航系统的应用背景及发展状况,介绍了捷联惯导系统的基本原理,设计了基于DSP/FPGA的捷联惯导系统方案,实现了系统各部分硬件电路以及FPGA 功能模块,并通过搭建硬件验证平台和利用第三方仿真软件,对传感器的性能以及FPGA各功能模块进行了较全面的验证和仿真。结果表明:基于DSP厅PGA的捷联惯导系统能够满足应用的要求,并在小型化、低成本和高性能等方面有一定的优势。
2023-02-27 19:56:38 4.25MB 捷联惯导系统 FPGA dsp mems
1