:介绍了利用交互式数据语言(Interactive Data Language,IDL)开发TM/ETM遥感影像大气与地形校正模型的详细过程,以 2000 年4 月30 日密云ETM影像为例,对大气与地形校正方法的有效性和实用性进行了验证。结果表明,该方法有效地消除了大 气与地形影响,提高了地表反射率等地表参数的反演精度和数据质量,为进一步开展定量遥感研究提供了数据质量保障。 ### 基于IDL的遥感影像大气与地形校正方法实现 #### 1. 引言 光学遥感技术广泛应用于多个领域,包括环境监测、资源管理等。然而,大气和地形因素对遥感影像的质量有着显著影响。大气中的散射作用会使电磁波强度衰减,降低图像反差;而地形起伏会导致大气垂直分布的变化,进一步影响图像质量。特别是在山地丘陵等复杂地形区域,这种影响更为显著。为了提高遥感影像的准确性及其在定量遥感研究中的应用价值,大气与地形校正变得至关重要。 #### 2. 模型总体设计 目前,存在多种大气与地形校正方法,但普遍缺乏一种适用于所有场景的通用方法。每种方法都有其特定的应用范围和局限性。本文介绍了一种基于IDL(Interactive Data Language)开发的大气与地形校正模型,并通过2000年4月30日密云地区的ETM影像对该方法进行了验证。 #### 3. IDL简介 IDL是一种专为科学计算和数据可视化设计的编程语言,由Research Systems Inc.(RSI)开发。它以其简洁的语法、强大的矩阵运算能力和高效的图形处理功能著称。IDL非常适合用于遥感影像处理,因为它能够高效地处理大量数据,并提供丰富的图形展示选项。此外,许多遥感软件(如ENVI)就是基于IDL构建的,这使得IDL编写的程序可以直接在这些环境中运行,无需额外的转换或接口工作。 #### 4. 大气与地形校正原理 大气与地形校正的核心在于准确估计并去除大气效应以及地形对遥感影像的影响。这一过程通常包括以下几个步骤: - **大气校正**:基于不同的模型(例如MODTRAN模型),估计大气路径辐射和大气散射,进而计算出无大气影响的地表反射率。 - **地形校正**:考虑到地形对入射角度的影响,通过地形因子(如坡度、坡向等)来调整每个像素的光照条件,从而校正因地形差异导致的辐射差异。 #### 5. 实现细节 - **IDL程序设计**:首先定义输入输出格式,然后根据大气校正模型编写代码。这包括读取遥感影像数据、应用MODTRAN模型计算大气透过率等步骤。 - **地形因子计算**:基于DEM数据计算地形因子,如坡度、坡向等。 - **校正算法**:结合大气透过率和地形因子,计算出校正后的地表反射率。 #### 6. 应用实例 以2000年4月30日密云地区的ETM影像为例,应用上述方法进行大气与地形校正。通过对校正前后影像的对比分析,验证了该方法的有效性和实用性。校正后影像的地表反射率更加准确,显著提高了数据质量,为后续的定量遥感研究提供了有力支持。 #### 7. 结论 本研究通过IDL实现了TM/ETM遥感影像的大气与地形校正方法。实验结果证明,该方法能有效消除大气与地形对遥感影像的影响,提高地表反射率等地表参数的反演精度,为定量遥感研究奠定了坚实的基础。未来的工作可以进一步优化校正算法,探索更多样化的应用场景,以提升遥感技术在各个领域的应用价值。
2024-10-14 23:26:21 823KB
1
介绍了采用数字图像处理技术对不规则岩石节理裂隙进行宽度测量的不同方法。对比分析了常用的等面积圆算法、等面积椭圆算法和简单Ferret算法的应用缺陷,提出了改进的Ferret算法,详细说明了其实现原理,并通过实例验证了改进的Ferret算法的可行性。
2024-09-05 12:22:18 212KB 数码影像
1
奥维地图是一款强大的地图软件,它支持多种地图源,包括谷歌地图。在本文中,我们将深入探讨如何在奥维地图中添加谷歌地图图源,以及如何利用二维码进行快速添加。 我们需要理解“图源”在奥维地图中的概念。图源是指地图数据的来源,不同的图源可以提供不同的地图视角和数据,比如卫星图像、地形图等。谷歌地图是全球广泛使用的地图服务,其卫星影像和街景功能深受用户喜爱。在奥维地图中添加谷歌地图图源,可以让用户在奥维地图上查看谷歌的地图数据。 添加谷歌地图图源的方法有两种:手动设置和通过二维码快速导入。描述中提到的"打开奥维,扫描二维码直接添加地图",指的是第二种方法。这通常适用于官方或社区提供的更新图源二维码,用户只需在奥维地图应用内使用扫码功能,扫描二维码即可完成图源的添加。奥维谷歌影像导入二维码.jpg 文件很可能就是这样一个二维码,你可以尝试用奥维地图APP扫描该图片,按照提示进行操作。 对于手动设置图源,你需要在奥维地图的设置选项中找到“地图源管理”或者类似的菜单,输入谷歌地图的服务器地址和相关参数。由于谷歌地图的图源可能受到访问限制,所以这种方法可能会遇到无法加载地图的问题,需要一定的网络知识和技巧。 卫星地图365.txt 文件可能包含了关于不同日期的卫星地图信息,或者是与地图服务相关的设置数据。如果你需要获取最新的卫星影像数据,可能需要解析这个文本文件,或者按照文件中的指示进行操作。这一步通常涉及到地图服务的更新和维护,对于普通用户来说可能较为复杂,但对熟悉地图数据处理的专业人士而言,这是一个获取最新地图信息的方式。 要在奥维地图中添加谷歌地图图源,可以通过扫描二维码的便捷方式,或者手动配置地图源。同时,了解如何获取和使用最新的卫星影像数据也是提升地图体验的重要环节。奥维地图的这种灵活性和多样性,使得用户可以根据自己的需求定制个性化的地图服务,享受更丰富的地理信息。
2024-08-14 07:13:24 425KB 谷歌影像
1
主要用于多视角卫星影像的三维重建算法,资源共9个文件,其中8个文件分别对应八个压缩文件包,代表每个区域的影像,每个压缩包里对应着多视角卫星影像和RPC文本文件,第九个文件为机载激光雷达产生的真值影像文件,本数据为s2p算法的主要实验数据。数据整体情况:数据量整体较小,但覆盖的类型全,如低矮建筑,中高层建筑,高层建筑等,对卫星三维重建的鲁棒性要求较高,因此是做卫星三维重建的不二选择,目前很多相关论文都拿此进行实验和算法调整优化。
2024-07-06 16:40:42 994.39MB 数据集
1
在使用深度学习模型研究遥感影像地物分类问题时,某些地物的遥感影像可用于训练的样本很少。同时,多样化的遥感影像获取方式产生了大量不同空间分辨率的多模态遥感影像。融合这些多模态遥感影像,弥补样本量少导致分类精度低的缺陷,是小样本的遥感影像高精度分类领域中亟待解决的问题。针对上述问题,提出了考虑两种空间分辨率遥感影像相关关系的融合分类方法。首先,使用两个并行的深度学习网络分别提取两种空间分辨率影像的高层特征;其次,将提取到的高层特征通过融合方法进行融合;最后,得到融合后的高层特征作为输入,训练整个融合分类模型。实验表明,不同融合策略的分类精度不同,本文提出的基于高层特征级别的融合策略可以有效提高分类精度。
2024-07-01 16:53:28 3.2MB 图像处理 深度学习
1
因为landsat影像由于风/云等原因而导致影像出现黑色条带遮挡
2024-06-03 10:31:34 21KB 影像去黑
1
高分一C遥感影像数据集
2024-05-28 15:29:14 101B 数据集 遥感影像
1
针对全卷积神经网络多次下采样操作导致的道路边缘细节信息损失和道路提取不准确的问题,本文提出了多尺度特征融合的膨胀卷积残差网络高分一号影像道路提取方法。首先,通过目视解译的方法制作大量的道路提取标签数据;其次,在残差网络ResNet-101的各个残差块中引入膨胀卷积和多尺度特征感知模块,扩大特征点的感受野,避免特征图分辨率减小和道路边缘细节特征的损失;然后,通过叠加融合和上采样操作将各个尺寸的道路特征图进行融合,得到原始分辨率大小的特征图;最后,将特征图输入Sigmoid分类器中进行分类。实验结果表明:本文方法的提取精度优于经典全卷积神经网络模型,准确率达到了98%以上,有效保留了道路的完整性及其边缘的细节信息。
2024-05-04 08:34:44 6.54MB 道路提取 高分一号 残差网络
1
针对图像中存在的对数螺旋线形状,提出了一种有效的对数螺旋线拟合方法。首先根据螺旋线的性质将已知图像中螺旋线的中心点约束在一个较小的区域内进行搜索,然后将从图像中获取的直角坐标系下的数据点通过坐标变换转换为能用直线形式表示的数据点,将对对数螺旋线的拟合转换为对直线的拟合。这一方法能快速、准确地拟合出图像中存在的对数螺旋线。
2024-04-11 14:41:13 620KB 数码影像
1