本书深入讲解MATLAB中的GPU编程技术,涵盖并行计算工具箱、gpuArray、CUDA内核集成及MEX文件开发。通过真实案例,帮助读者掌握利用GPU加速计算密集型应用的核心方法,适合希望提升MATLAB性能的工程师与科研人员。 MATLAB中的GPU编程是一种利用图形处理单元(GPU)来加速数学计算的技术。随着计算机图形和交互式游戏的迅速发展,GPU的处理能力得到了巨大的提升,现代GPU拥有成百上千的小型核心,可以并行处理大量数据。在高性能计算领域,GPU并行计算的能力逐渐被发掘并用于大规模科学计算。 本书《MATLAB GPU编程实战》深入讲解了在MATLAB环境下如何进行GPU编程。书中涵盖了并行计算工具箱的使用,这是MATLAB为方便并行计算而提供的工具集。此外,书籍还介绍了gpuArray这一特定于GPU计算的数据类型,它使得开发者能以数组的形式在GPU上存储和操作数据。使用gpuArray,可以在MATLAB中直接执行许多数组操作,并自动地在GPU上进行运算,这样可以显著提高数值计算的效率。 除了以上内容,书中还详细介绍了CUDA内核的集成。CUDA(Compute Unified Device Architecture)是NVIDIA推出的并行计算平台和编程模型,它允许开发者利用NVIDIA的GPU来执行通用计算。在MATLAB中,可以集成CUDA代码到MATLAB程序中,从而实现更为复杂的并行计算。作者还介绍了如何使用MEX文件进行GPU编程,MEX文件是一种可执行文件,能够与MATLAB代码交互运行,通过这种方式,开发者可以将GPU的优势更灵活地应用到需要优化的计算中。 本书通过一系列真实案例,讲解了如何将上述技术应用于实际问题,帮助读者掌握利用GPU加速计算密集型应用的核心方法。案例包括图像处理、深度学习、线性代数运算等多个领域。尤其对于工程师和科研人员来说,GPU编程是一个能够显著提升MATLAB性能的利器,学会使用这一技术将为他们在处理大规模数据和高复杂度计算时提供极大的帮助。 书中内容不仅适合那些希望通过GPU计算提升MATLAB性能的读者,同时也为希望深入理解GPU并行计算原理的读者提供了丰富的知识。考虑到并行计算在现代科学和工程领域的重要性日益增加,本书内容对于这一领域的专业人员来说是一份宝贵的资源。
2025-12-25 14:38:16 65.06MB GPU 并行计算 MATLAB
1
在本文中,我们将深入探讨如何使用MSP430微控制器通过并行和端口模拟SPI(Serial Peripheral Interface)协议来控制AD9854数字频率合成器。MSP430是由德州仪器(Texas Instruments)开发的一款低功耗、高性能的16位微控制器,广泛应用于各种嵌入式系统设计中。而AD9854是一款高精度、低功耗的直接数字频率合成器(DDS),常用于信号发生器和通信设备。 理解SPI协议至关重要。SPI是一种同步串行接口,通常用于连接微控制器和外部设备,如传感器、存储器等。SPI协议包含四个主要信号线:主时钟(SCLK)、主输出从输入(MISO)、主输入从输出(MOSI)和芯片选择(CS)。在模拟SPI时,MSP430需要复用其GPIO(General Purpose Input/Output)端口来实现这些功能。 1. **并行模拟SPI**: 由于MSP430的硬件SPI可能无法直接与AD9854兼容,因此我们需要通过并行方式模拟SPI协议。这涉及到在代码中精确控制数据传输的时序,通过独立设置MISO、MOSI和SCLK引脚的电平。例如,MSP430可能需要配置一个GPIO端口为MOSI,另一个为SCLK,并根据协议要求在适当时间切换它们的状态。 2. **端口模拟**: 在MSP430上,我们还可以利用GPIO端口的多个引脚来模拟SPI的数据线。例如,可以将一个端口的4个或更多引脚分别分配给SCLK、MISO、MOSI和CS,然后通过软件控制这些引脚的电平状态,实现SPI通信。 3. **控制AD9854**: AD9854有多个控制和数据输入引脚,如数据总线(D7-D0)、地址总线(A2-A0)、写使能(WE)、读使能(RE)和复位(RST)。通过模拟SPI,MSP430需要按照AD9854的数据手册中指定的时序和命令格式,向这些引脚发送适当的信号来配置和控制频率合成器。 4. **程序实现**: 在C语言或汇编语言中,编写控制程序需要精确的时序控制。例如,使用延时函数确保每个时钟周期的准确,以及在合适的时间切换数据线状态。同时,确保正确设置CS信号以选择AD9854,避免与其他SPI设备冲突。 5. **注意事项**: - 确保正确配置MSP430的GPIO端口模式,使其能够作为推挽输出或开漏输出。 - 注意时钟速度的选择,通常SPI速度不应超过从设备的最高时钟速率。 - 为了提高效率,可以考虑使用中断处理来同步MSP430的其他任务。 通过以上步骤,我们可以成功地使用MSP430微控制器通过并行和端口模拟SPI方式控制AD9854,实现频率合成器的精准控制。这种模拟方法虽然比硬件SPI接口复杂,但灵活性更高,能够适应各种不同的外设和接口需求。在实际应用中,开发者应仔细研究MSP430和AD9854的数据手册,以确保正确配置和操作。
2025-12-16 10:34:02 101KB
1
内容概要:本文详细介绍了在Xilinx FPGA平台上实现高效的CameraLink图像传输的方法和技术细节。首先,文章讨论了硬件架构的设计,包括使用SelectIO和IDDR原语进行时钟恢复和串并转换,确保高速稳定的信号处理。接着,针对接收端和发送端的具体实现进行了深入探讨,如利用状态机处理控制信号、通过AXI-Stream协议提高传输效率以及解决时钟相位补偿等问题。此外,文章还分享了一些调试经验和常见问题的解决方案,强调了FPGA方案相比传统编解码芯片的优势,如更高的灵活性、更低的成本和更好的性能。 适合人群:熟悉FPGA开发的技术人员,尤其是从事工业视觉领域的工程师。 使用场景及目标:适用于需要高性能、低成本的CameraLink图像传输解决方案的项目,旨在帮助开发者理解和掌握FPGA在图像传输方面的应用,从而优化现有系统或开发新产品。 其他说明:文中提供了大量具体的Verilog代码片段和TCL脚本,便于读者理解和实践。同时,作者还分享了许多宝贵的实践经验,有助于避免常见的错误和陷阱。
2025-12-12 14:08:44 332KB
1
使用FPGA来调试AD9851,采用并行模式输入。开发板为正点原子的达芬奇开发板xc7a35t-2 ffg484。工程中有仿真和ILA波形抓取,已经过测试们可以正常工作。 资源里带有AD9851原理图以及翻译版本
2025-11-30 19:06:50 95.06MB fpga开发
1
Tsetstand自定义界面:高效并行测试,UUT灵活操作,强大的Execution View控件与灵活的界面管理依赖TestStand运行时支持,Tsetstand自定义界面:高效并行测试,UUT灵活操作,强大的Execution View控件与灵活的界面管理依赖TestStand运行环境,Tsetstand自定义界面,只需要把测试序列放在根目录下,最大支持6个UUT并行测试(可编辑指定)。 除了测试参数需要自己做并生成exe,界面其它功能都可以通过简单修改文本实现快速运行。 1.UUT图片可以指定路径 2.测试序列放到指定目录文件自动加载 3.每个Scoket都有独立的暂停,继续,终止等控制按钮 3.每个Scoket都有独立的报表显示 4.执行视图采用TS的Execution View 控件,相比较第一版的LV表格控件,它能实时显示被嵌套调用的序列执行状态。 5.界面自由增加删除用户信息 本软件依赖于teststand2019 x86 runtime ,核心关键词: 1. Tsetstand自定义界面 2. 测试序列 3. UUT并行测试 4. 指定路径 5. 独立控制按钮 6
2025-11-24 22:06:49 5.69MB xbox
1
本文提出了一种适用于高数据速率通信接收机的高效并行符号定时架构。 所展示的架构依赖于经典Gardner循环的修改版本,并具有“多通道流水线”内插器,该符号使符号率比FPGA的时钟率高出几倍,从而最大程度地提高了可实现的吞吐量。 在Xilinx XC7VX690T FPGA上以150MHz时钟速率演示了时序恢复方案,并在4.8GHz采样率ADC上演示了该时序恢复方案,以实现600Msps符号速率的QPSK数据流。 此外,可以观察到,提出的方案仅占用目标FPGA中逻辑,存储和计算资源的2%。 稍作修改,我们的算法就可以适用于其他幅度调制星座,例如8PSK,16PSK或QAM。 ### 使用FPGA实现600Msps QPSK的并行符号时序恢复 #### 摘要 本文介绍了一种高效并行符号时序恢复架构,特别适用于高数据速率的通信接收机。该架构基于经典Gardner循环的一个修改版本,并引入了一个“多通道流水线”插值器,使得符号率可以远高于FPGA的工作时钟频率,从而极大地提升了可实现的吞吐量。本研究在Xilinx XC7VX690T FPGA上以150MHz时钟速率进行了实验验证,并与一个采样率为4.8GHz的ADC结合使用,实现了600Msps QPSK数据流的时序恢复。实验证明,所提出的方案只占用了目标FPGA中的逻辑、存储和计算资源的2%。稍加修改后,该算法还可以应用于其他类型的幅度相位调制星座,例如8PSK、16PSK或QAM。 #### 关键词 符号时序恢复、插值、多通道流水线、FPGA #### 1. 引言 符号同步(即定时恢复)是数字通信接收机中的关键技术之一。其基本原理是从输入的基带数字波形中找到每个符号的最佳抽样位置。通常情况下,抽样率\(f_{\text{smp}}\)被选择为符号率\(R_s\)的整数倍,即\(f_{\text{smp}} = N \cdot R_s\),其中\(N\)为正整数。经典的定时恢复方法,如Gardner循环,在其原始形式下,假设接收机可以执行数字信号处理操作的时钟频率\(f_{\text{clk}}\)至少等于或大于\(f_{\text{smp}}\),这是许多实际数字接收机设计的起点。 然而,随着符号率的提高,意味着信息传输带宽的增加,这对于全球卫星通信系统、无人机(UAV)4K视频传输等众多应用场景来说至关重要。当符号率\(R_s\)提高到某个水平,以至于\(f_{\text{smp}}\)甚至\(R_s\)超过了FPGA的工作时钟频率时,传统的定时恢复方法面临挑战。 #### 2. 并行符号时序恢复架构 为了克服上述限制,本文提出了一种新的并行符号时序恢复架构。这一架构的特点在于利用了改进版的Gardner循环以及多通道流水线插值技术。改进后的Gardner循环能够更准确地估计符号的定时误差,而多通道流水线插值则可以有效降低符号间的干扰,并允许符号率远远超过FPGA的时钟频率。 **2.1 改进的Gardner循环** Gardner循环是一种常用的无数据辅助的定时恢复方法。传统Gardner循环通过检测相邻两个样本之间的相位差来估计定时误差。本文中的改进版Gardner循环进一步优化了相位检测机制,提高了定时误差估计的精度。 **2.2 多通道流水线插值** 多通道流水线插值技术的核心在于将符号的处理过程分解成多个并行的子通道,每个子通道负责一部分数据的处理。这种方法可以显著提高处理速度,同时减少对FPGA资源的占用。通过采用合适的插值算法,可以有效地补偿由于高速采样带来的时延和失真问题。 #### 3. 实验验证 为了验证所提方案的有效性,我们在Xilinx XC7VX690T FPGA平台上进行了实验。该平台工作在150MHz的时钟频率下,与4.8GHz采样率的ADC相结合,成功实现了600Msps QPSK数据流的符号时序恢复。实验结果表明,即使在如此高的数据速率下,方案仍然保持良好的性能,并且仅消耗了目标FPGA中约2%的逻辑、存储和计算资源。 #### 4. 应用扩展性 本研究还讨论了方案的应用扩展性,即如何将此架构应用到其他类型的调制星座中,如8PSK、16PSK或QAM等。这些调制方式虽然在复杂度上高于QPSK,但同样适用于高速数据传输场景。通过适当的修改,本文提出的架构可以很好地适应这些调制方式,从而拓宽其应用场景。 #### 结论 本文提出了一种高效的并行符号时序恢复架构,该架构基于改进的Gardner循环和多通道流水线插值技术,成功地在高数据速率通信接收机中实现了600Msps QPSK数据流的符号时序恢复。实验结果显示该架构不仅性能优越,而且资源消耗极低,具有很高的实用价值。此外,该架构还展示了良好的扩展性,可以应用于其他类型的调制星座,展现出广泛的应用前景。
2025-11-19 20:40:49 1022KB symbol timing recovery interpolation
1
在MATLAB中,Simulink Model Reference是一种强大的工具,它允许用户将Simulink模型作为模块嵌入到其他更大的系统模型中。这种技术在复杂的控制系统设计中尤其有用,因为它允许分解大模型,提高代码重用性和系统模块化。在本案例中,"matlab开发-使用SimulinkmodelReferenceBuild进行并行计算"着重关注如何利用Model Reference来实现并行计算,以优化性能。 `pctModelRef.m` 文件很可能包含了创建Model Reference模型的脚本。PCT(Parallel Computing Toolbox)是MATLAB中的一个扩展工具箱,用于支持并行计算。在该脚本中,可能包含了设置并行环境、配置Simulink模型为Model Reference以及编译模型以利用多核处理器或分布式计算资源的代码。 `cleanUpMref.m` 可能是一个清理脚本,用于删除先前构建的Model Reference模型或者编译过程中产生的临时文件,以保持工作空间的整洁。 接下来是一系列以`bot_model*`命名的Simulink模型文件,它们代表了不同版本或配置的机器人控制系统模型。这些模型被设计为Model Reference模块,可以被引用到更大的系统模型中,如`mid5_1.mdl`、`mid5_2.mdl` 和 `simpletop.mdl`。通过Model Reference,可以在不改变模型内部结构的情况下,对多个不同版本的控制策略进行比较和测试。 `mid5_1.mdl` 和 `mid5_2.mdl` 可能是两个中间层次的模型,它们各自包含了一个或多个`bot_model*`作为子系统,并可能连接了其他组件,如传感器、控制器和执行器。这些模型可能代表了系统在不同条件或阶段的行为。 `simpletop.mdl` 可能是顶层模型,它将所有`mid5_*.mdl`或者其他子系统集成在一起,形成一个完整的控制系统。在这个顶层模型中,可以利用Model Reference的并行计算能力,通过并行运行不同的`bot_model*`实例来加速仿真过程,特别是在进行多场景分析或参数扫描时。 在实际应用中,通过Simulink Model Reference进行并行计算可以显著减少大规模系统的仿真时间。用户可以根据需求选择合适的模型实例进行并行处理,从而提高效率。同时,Model Reference还支持静态和动态绑定,前者在编译时确定子系统的实例,后者则在运行时根据输入动态选择。这种灵活性使得系统设计更加适应变化的需求。 这个压缩包内容展示了如何在MATLAB的Simulink环境中利用Model Reference和并行计算来优化控制系统的设计和仿真。通过理解和应用这些文件中的知识,工程师可以有效地处理复杂的系统模型,提高工作效率。
2025-11-17 21:32:15 105KB 控制系统
1
本书汇集Euro-Par 2014会议精选论文,聚焦并行与分布式计算领域的最新进展。内容涵盖高性能架构、编译器优化、调度与负载均衡、绿色计算及数据管理等核心主题。书中探讨了GPU加速、多核系统自动调优、云计算环境下的资源管理等关键技术,并提出多种创新模型与算法,如基于现场分析的追踪框架ScalaJack、面向能效的调度策略及RDMA增强型MapReduce性能优化方案。通过理论分析与实验验证相结合,展示了当前高性能计算在能效、可扩展性和系统协同方面的突破。本书适合从事计算机科学、并行处理、分布式系统及相关工程应用的研究人员与技术人员阅读,是了解当代并行计算发展趋势的重要参考资料。
2025-11-05 14:42:51 56.62MB Parallel Computing High Performance
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 Fortran,作为历史最悠久的高级编程语言,凭借卓越的数值计算能力与高性能并行处理特性,持续统治科学计算、工程模拟、气象预测等领域。其专为数学表达式设计的语法与不断演进的标准(Fortran 2023),让科学家与工程师能高效处理复杂算法,从量子物理研究到超级计算机应用,Fortran 始终是计算科学的基石语言。
2025-10-29 16:26:50 4.68MB Fortran
1
最新版本-西南交通大学-云计算与并行技术-戴林朋-作业1
2025-10-08 21:50:10 11.98MB Hadoop HDFS MapReduce
1