在近年来的图像处理和计算机视觉研究领域中,道路分割作为一个重要议题,一直受到广泛的关注。这是因为,通过精确的道路分割,可以有效提升自动驾驶、智能交通管理系统以及各种遥感图像分析的性能。其中,K-Means聚类算法由于其实现简单,计算效率高等特点,在道路分割任务中扮演着重要的角色。 K-Means算法是一种经典的无监督学习算法,它的基本原理是通过迭代更新簇中心和簇内样本点的方式,最小化簇内距离之和,从而达到将样本集划分为K个簇的目的。然而,当面对包含大量噪声和细节的道路图像时,传统的K-Means算法往往难以获得令人满意的分割效果。为了解决这个问题,研究者提出了在K-Means聚类前加入预处理步骤——最小梯度平滑(Minimum Gradient Smoothing,简称MSSB)的算法改进方案。 最小梯度平滑是一种有效的图像平滑技术,它通过计算图像的梯度信息,并对梯度进行抑制和平滑处理,从而减少图像中的高频噪声,保留图像中的主要边缘信息。将MSSB技术应用于K-Means算法之前,可以有效去除图像中不必要的细节和噪声,同时尽可能保留道路的边缘特征,为K-Means聚类提供更为清晰的初始数据。 在实验过程中,研究者首先对道路图像进行最小梯度平滑处理,然后将处理后的图像数据输入到K-Means算法中进行聚类分割。这种预处理与聚类相结合的方法,在实验中展现出了较为明显的分割效果提升。具体来说,通过平滑预处理的图像,K-Means算法能够更准确地识别出道路的轮廓,减少了误分割和漏分割的情况,提高了分割的准确率和稳定性。 除了实验效果的提升,本次研究还提供了一份宝贵的实验资源。该资源包含了实现最小梯度平滑预处理和K-Means聚类的道路分割算法的代码实现,以及用于实验的图像数据集。这些资源对于希望在该领域进行深入研究的学者和工程师来说,无疑是一份宝贵的财富。他们可以直接使用这些资源,进行算法的复现、比较和优化工作,从而加快道路分割技术的研究进展,推动相关领域的发展。 值得注意的是,尽管本实验通过最小梯度平滑预处理显著改善了K-Means聚类的道路分割效果,但该方法仍然存在一定的局限性。例如,对于极不规则的道路形状或是道路与背景对比度极低的情况,算法的性能可能会有所下降。因此,如何进一步提升算法在更复杂环境下的适应性和鲁棒性,将是未来研究的重要方向之一。 最小梯度平滑预处理与K-Means聚类算法相结合,为道路图像的高精度分割提供了一种有效的解决路径。通过实验验证,该方法确实能够提升分割的准确性和稳定性,同时附带的实验资源,也将为未来的相关研究提供重要的支持。随着算法的不断完善和优化,相信在不久的将来,道路分割技术将在自动驾驶和智能交通等领域发挥更大的作用。
2025-12-05 09:17:37 366.22MB kmeans
1
在计算机图形学中,贝塞尔曲线是一种非常常见且强大的工具,用于创建平滑连续的曲线。标题提到的“使用Bezier基本体通过一组2D点绘制平滑曲线”是指利用贝塞尔曲线的基本概念,通过一系列2D坐标点来构建一条平滑过渡的曲线。这种方法在UI设计、游戏开发、CAD软件等领域广泛应用。 贝塞尔曲线的基础是控制点,它们决定了曲线的形状和路径。在描述中提到的“计算分段贝塞尔曲线控制点使其成为样条曲线”,这是指将多个单个贝塞尔曲线连接起来形成一个连续的整体,即样条曲线。样条曲线是由一系列相邻的贝塞尔曲线段构成,每个段的终点与下一段的起点相接,确保了整体的平滑性。 在实现这个功能时,通常会采用C#或类似.NET框架的语言,如.NET 3.5,这需要开发者对Windows编程和GDI+(Graphics Device Interface Plus)有深入理解。GDI+是Windows API的一部分,提供了一套丰富的图形绘制函数,可以用来在屏幕上绘制2D图形,包括贝塞尔曲线。 VS2008(Visual Studio 2008)是微软的集成开发环境,它支持C#编程,并提供了便利的开发工具和调试器。在VS2008中,开发者可以编写代码,构建项目,以及测试和优化曲线绘制算法。 为了实现2D点到贝塞尔曲线的转换,我们需要以下步骤: 1. **确定控制点**:给定一系列2D点,我们首先需要计算每个贝塞尔曲线段的控制点。这些控制点将决定曲线的形状,使其通过给定点并保持平滑。 2. **分段处理**:如果只有一个贝塞尔曲线段,那么控制点就是两个端点和两个额外的控制点。但为了形成样条曲线,需要将这些点分成多个段,每个段是一个单独的贝塞尔曲线。 3. **插值计算**:使用线性插值或更复杂的算法(如Catmull-Rom插值)来确定每一段的控制点,确保曲线在每个相邻点之间平滑过渡。 4. **使用GDI+绘制**:在C#代码中,使用GDI+提供的`Graphics`对象的`DrawCurve`或`DrawBezier`方法来绘制贝塞尔曲线。这需要指定曲线的起点、终点和控制点。 5. **优化与调整**:可能需要根据实际效果调整控制点的位置,以获得理想中的曲线形状和流畅度。 提供的资源"Draw-a-Smooth-Curve-through-a-Set-of-2D-Points-wit.pdf"可能是关于这个话题的详细教程或论文,而"bezierspline.zip"可能包含示例代码或进一步的图形资源,帮助开发者理解和实现这一过程。 掌握贝塞尔曲线和样条曲线的绘制技术,对于任何涉及2D图形处理的开发者来说都是必备的技能。它不仅有助于创建美观的用户界面,还可以在物理模拟、动画制作、数据可视化等场景中发挥重要作用。通过实践和理解这些知识点,开发者可以更灵活地控制和表达图形的形态和动态。
2025-12-01 18:19:06 119KB XML Windows .NET .NET3.5
1
卡尔曼·克劳迪代码 matlab EnKF_EnOI_ES_EnKS 一个玩具 DA 系统,它使用(强制)一维线性扩散/平流模型来比较以下集成 DA 方案: 集成卡尔曼滤波器:EnKF 集合最优插值:EnOI 合奏平滑:ES 合奏卡尔曼平滑器:EnKS 更新方案一次性考虑所有观察结果(即批量样式)并使用转换矩阵(X5;Evensen,2003)。 我还提供了一个 EnKS 函数,它可以连续吸收观察结果并使用 DART 的样式(两步更新,Anderson,2003)。 这仅仅是一个教育包。 编码风格(在 MATLAB 中)不是一流的。 目的是让用户熟悉不同的集成方案、它们的实现和性能。 首先,您可以运行DA_EnKF_EnOI_ES_EnKS.m来比较DA_EnKF_EnOI_ES_EnKS.m框架中的不同方案。 您可以选择模型(平流或扩散))整体大小和更平滑的滞后DA_EnKF_EnOI_ES_EnKS.m调用单独的函数: EnKF.m 、 EnOI.m 、 ES.m和EnKS.m为了模拟现实场景,2 个模型参数是忐忑。 因此,预测模型不同于用于生成真相的模型。 要研究滞后长度的影响,
2025-11-18 14:14:56 436KB 系统开源
1
MIMO雷达是一种多输入多输出雷达系统,它利用多个发射和接收天线来提高雷达系统的性能。MIMO雷达在测量目标的波达方向(DOA)方面具有显著的优势,特别是在多径环境下,能够有效区分直接信号和反射信号。多径效应是指雷达信号在传播过程中遇到障碍物后反射,形成多条路径到达接收点,这些路径的信号可能相互干涉,造成信号质量的波动。在多径环境中准确估计目标的DOA对于雷达系统来说是一个重要的技术挑战。 针对这一挑战,本文提出了基于双向空间平滑的样本复用MIMO雷达低角多径目标DOA估计算法。该算法基于MIMO雷达四路径回波信号模型,通过匹配滤波技术对接收信号进行处理,得到一个虚拟阵列,即等效的阵列接收数据。这种方法的优点在于可以利用MIMO雷达波形分集的特性,有效降低由多径效应引起的波达方向估计误差。 虚拟阵列的构建利用了MIMO雷达的空间分集能力,通过合成虚拟阵元来增加阵列的有效孔径,从而改善波达方向估计的性能。在虚拟阵列的基础上,算法实施了行列复用技术,即同时对虚拟阵列进行横向和纵向的空间平滑处理。这种双向空间平滑的做法可以进一步减少多径效应带来的干扰,提高低信噪比条件下的DOA估计精度。 空间平滑是一种有效的信号处理技术,主要用来抑制阵列信号中由于相干噪声引起的估计误差。在MIMO雷达系统中,空间平滑通过构造一个新的信号协方差矩阵来实现对信号的处理,该矩阵可以通过对原始数据进行加权平均得到,从而使原本因多径效应而相干的信号变得不相干,削弱或去除这些相干噪声的影响。 文章中提到的M-S-S MUSIC算法是一种常用的波达方向估计算法,它基于信号的特征结构,并利用子空间技术来估计目标方向。然而,该算法在低信噪比环境下性能会有所下降。本研究的算法通过空间平滑有效提高了DOA估计的精度,特别是在信噪比小于-12dB的恶劣环境下,能够将均方根误差平均减小1度,显示了显著的性能优势。 关键词中提及的“MIMO雷达”、“多径”、“波达方向估计”和“空间平滑”是雷达信号处理领域的专业术语,反映了本文算法所涉及的核心技术和应用场景。MIMO雷达的应用主要是在无线通信和雷达系统中,利用空间分集提高系统的性能;多径分析则是在雷达和通信信号处理中必须考虑的环境因素;波达方向估计是雷达系统对目标进行定位和跟踪的重要依据;空间平滑技术在雷达信号处理中具有减少干扰、增强信号处理能力的作用。 文章的研究成果对于雷达系统设计、信号处理算法开发以及多径环境下的目标定位等方面都具有重要的理论和实际应用价值。通过改善DOA估计精度,可以有效提升雷达系统的性能,特别是在复杂电磁环境下,对于提高目标检测、跟踪和识别能力具有重要的意义。
2025-10-24 11:09:37 1.52MB 研究论文
1
针对基于阵列协方差矩阵特征分解的子空间类算法存在的问题,提出了一种基于改进空间平滑的新方法。首先介绍了“等效信源”的概念,在此基础上分析了当目标数多于发射阵元数时,一些基于子空间类算法失效的原因;从理论上推导说明了在接收阵元数足够多的情况下,本文算法可突破发射阵元数对可估计目标数的限制的机理,从而使得MIMO雷达在发射阵元数较少时能估计更多的目标。仿真结果表明:本文所提方法具有比TDS算法更好的估计性能。
2025-10-24 10:52:24 752KB 工程技术 论文
1
无人机航迹平滑处理在无人机飞行任务中至关重要,它能够确保无人机沿着预设的平滑路径飞行,提高飞行效率和安全性。贝塞尔曲线是计算机图形学中广泛使用的一种平滑曲线生成方法,常用于设计流畅的路径。在这个项目中,我们将深入探讨如何使用C++实现无人机航迹的贝塞尔曲线平滑处理,并结合osgEarth库进行可视化。 贝塞尔曲线的基本概念源自数学,它由一系列控制点决定,通过线性或非线性的组合,生成一条连续且平滑的曲线。在四阶贝塞尔曲线(最常见的类型)中,有四个控制点:起点P0、两个中间控制点P1和P2,以及终点P3。通过贝塞尔多项式,我们可以计算出任意参数t下的曲线点位置,t取值范围为0到1。 C++实现贝塞尔曲线通常涉及以下几个步骤: 1. **定义数据结构**:创建一个结构体或类来存储控制点坐标,如`struct ControlPoint { float x, y, z; }`。 2. **贝塞尔函数**:编写贝塞尔曲线的计算函数,该函数接受控制点数组和参数t,返回对应位置的坐标。对于四阶贝塞尔曲线,可以使用递归方式实现,如下: ```cpp Vector3D BezierCurve(const ControlPoint* points, float t) { if (t == 0 || t == 1) return points[t == 0 ? 0 : 3]; Vector3D p1 = BezierCurve(points, t * (1 - t)); Vector3D p2 = BezierCurve(points + 1, t * (1 - t)); return (1 - t) * p1 + t * p2; } ``` 3. **参数化处理**:根据无人机航迹需求,将时间转换为参数t,然后调用贝塞尔函数获取相应位置。 4. **生成航迹**:遍历时间轴上的多个时间点,生成对应的贝塞尔曲线点,形成完整的航迹。 osgEarth是一个强大的开源库,用于在OpenGL环境中进行地球可视化。要结合osgEarth绘制贝塞尔曲线,我们需要: 1. **导入库**:在C++代码中包含必要的osgEarth头文件,并链接库。 2. **创建场景节点**:使用osgEarth的`Feature`和`Geode`类来表示航迹点。每个航迹点都是一个`Geometry`对象,可以通过`addDrawable`添加到`Geode`中。 3. **设置样式**:通过`Style`对象配置航迹的外观,如颜色、线宽等。 4. **添加到地图**:将`Geode`对象添加到`MapNode`,并将其置于场景图中。 5. **渲染**:启动osgEarth的渲染循环,展示平滑的贝塞尔曲线航迹。 在实际应用中,可能还需要考虑航迹的实时更新、动态调整控制点以及与其他飞行控制系统的接口集成等问题。通过熟练掌握C++和osgEarth,我们可以有效地实现这些功能,为无人机提供精确、平滑的飞行路径。
2025-10-20 22:00:59 4KB
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-10-18 15:46:50 3.05MB matlab
1
函数 binAveraging 通过平滑高频范围,可以更清晰地可视化湍流速度密度的功率谱密度估计。 它还可以用于将数据平均到不重叠的 bin 中。 本呈件包含: - 函数 binAveraging.m - 示例文件 Example.mlx - 包含模拟湍流速度波动的时间序列的数据集 PSD_velocity.mat 那是提交的第一个版本; 一些错误可能仍然存在。 欢迎任何意见、建议或问题!
2025-10-08 18:52:58 299KB matlab
1
"Matlab高级技术:高光谱数据全面预处理与特征选择建模分析",matlab处理 高光谱数据预处理(SG平滑、SNV、FD、SD、DWT、RL、MSC) 特征波段选择(CARS、UVE、SPA),建模(PLSR,RF,BPNN,SVR) 同时可以利用matlab提取高光谱影像的光谱信息,进行上述处理。 ,高光谱数据处理;SG平滑;SNV;FD;SD;DWT;RL;MSC;特征波段选择;光谱信息提取。,Matlab高光谱数据处理与建模分析 高光谱成像技术是一种能够获取物体表面反射或辐射的光谱信息的现代遥感技术。它通过对成千上万连续的光谱波段进行分析,提供比传统影像更加丰富的地物信息。由于高光谱数据具有数据量大、信息丰富、光谱分辨率高的特点,因此在遥感、矿物勘探、农业、食品工业等领域有着广泛的应用。然而,原始高光谱数据往往包含噪声和冗余信息,因此需要进行一系列预处理和特征选择来提高数据质量,以便于后续分析和建模。 在高光谱数据的预处理阶段,常用的处理方法包括SG平滑(Savitzky-Golay平滑)、SNV(标准正态变量变换)、FD(傅里叶变换去噪)、SD(小波去噪)、DWT(离散小波变换)、RL(秩最小二乘法)、MSC(多元散射校正)等。这些方法旨在去除随机噪声、校正光谱偏差、增强光谱特征等,以提高数据的信噪比和光谱质量。 特征波段选择是高光谱数据分析的另一关键步骤,它能够从众多波段中选取最有代表性和辨识度的波段,提高后续分析的准确性和效率。常用的特征波段选择方法包括CARS(竞争性自适应重加权抽样)、UVE(未校正变量估算)、SPA(连续投影算法)等。这些方法通过不同的算法原理,如基于最小冗余最大相关性、基于模型预测能力等,来优化特征波段的选择。 建模分析是将预处理和特征选择后的数据用于构建预测模型的过程。在高光谱数据分析中,常用的建模方法有PLSR(偏最小二乘回归)、RF(随机森林)、BPNN(反向传播神经网络)、SVR(支持向量回归)等。这些模型能够根据光谱特征进行有效的信息提取和模式识别,广泛应用于分类、定量分析、异常检测等领域。 Matlab作为一种高性能的数值计算和可视化软件,提供了丰富的工具箱和函数用于处理高光谱数据。通过Matlab,研究者能够方便地进行光谱信息提取、数据预处理、特征选择和建模分析等工作,极大地提高了高光谱数据处理的效率和准确性。 此外,文档中提及的"处理高光谱数据从预处理到特征波段选择与建模"系列文件,可能包含了更为详细的理论解释、操作步骤、案例分析等内容,为读者提供了系统学习和实践高光谱数据处理和建模分析的途径。 高光谱数据处理涉及多种技术手段和算法,目的是为了更高效、准确地从复杂的高光谱影像中提取有用信息。随着高光谱成像技术的不断进步和相关算法的不断发展,其在遥感和相关领域的应用前景将会越来越广泛。
2025-09-19 16:37:51 321KB ajax
1
### 二维拓扑优化设计的后处理和平滑清晰几何图形的提取 #### 背景与简介 拓扑优化(Topology Optimization, TO)是一种数学方法,用于在预定义的设计空间内对材料区域进行优化,使其在给定的要求和边界条件下满足特定的目标。这种优化能够大大缩短产品的开发周期,并且还能在满足特定目标的同时减少生产过程中的材料用量。二维拓扑优化尤其适用于平面结构的优化设计,如桥梁、框架等。 #### 问题定义 对于二维拓扑优化而言,一个简单的代码比复杂的商业软件更易于操作和理解。例如,经典的88行MATLAB代码就是一个很好的起点,它支持多种载荷情况,具有网格独立性,并且计算速度快。此外,该代码已经被广泛验证为理解和学习拓扑优化的一个优秀工具。然而,该代码也有其局限性,如处理复杂边界条件的能力较弱等。 #### 方法论 本研究主要聚焦于拓扑优化后的处理流程,即如何从优化结果中提取平滑且清晰的几何图形,并将其转换成CAD模型,以实现设计到制造的一体化。具体包括以下几个方面: 1. **拓扑优化**:采用典型的拓扑优化方法,如SIMP法(Solid Isotropic Material with Penalization)、水平集法等进行结构优化设计。 2. **几何平滑**:对拓扑优化的结果进行后处理,以去除不连续性和噪声,提高几何形状的质量。 3. **几何提取**:从优化结果中提取边界轮廓,形成清晰、准确的几何形状。 4. **设计结果CAD重构**:将提取的几何形状导入CAD系统,生成可用于制造的精确模型。 5. **边界提取**:识别并提取出优化结果中的边界,以确保模型的完整性和准确性。 #### 结果分析 为了评估所提出的方法的有效性,本研究选取了几个典型的二维结构案例进行验证,包括但不限于: 1. **材料属性**:定义材料的弹性模量、泊松比等基本属性,这些参数将直接影响优化结果。 2. **MBB梁**:通过优化不同载荷条件下的MBB梁结构,测试方法的有效性。 3. **T型梁**:进一步验证方法在复杂结构上的适用性。 4. **额外细节**:探讨诸如网格尺寸、惩罚因子等因素对优化结果的影响。 5. **结果度量**:使用几何偏差、符合度和体积分数等指标来评价后处理的效果。 6. **限制因素**:讨论现有方法可能遇到的挑战和局限性,为未来的研究提供方向。 7. **展望**:基于当前研究的基础上,提出未来可能的发展方向和技术改进措施。 #### 实现细节 所有的编程工作均使用MATLAB完成,并采用了基于图像的后处理方法。这种方法的优势在于可以直接从二维优化结果中提取信息,并且可以最小化几何偏差、符合度和体积分数的变化。通过对多个数值实例的测试,我们能够全面评估该方法的性能、局限性和数值稳定性。 #### 总结 本文提出了一种有效的二维拓扑优化后处理方法,旨在从优化结果中提取平滑且清晰的几何图形,并将其重构为CAD模型,从而实现设计到制造的一体化。通过几个典型案例的分析,证明了该方法的有效性和可行性。未来的研究将进一步探索如何提高优化效率,以及如何更好地解决实际工程应用中的复杂问题。
2025-09-17 11:56:42 1.06MB 拓扑优化 边界提取 设计制造
1