我有一个机器学习的作业集合,有贝叶斯决策,概率密度函数的估计,朴素贝叶斯分类器和贝叶斯网络模型,线性分类器,非线性分类器,非参数辨别分类方法,特征提取和选择和聚类分析这个机器学习作业集合涵盖了多个重要主题。首先,贝叶斯决策理论基于概率,通过贝叶斯定理进行决策,在不确定性环境下应用广泛。其次,概率密度函数的估计涉及推断概率分布,使用直方图法、核密度估计等方法。朴素贝叶斯分类器是一种基于贝叶斯定理和特征独立性假设的分类算法,在文本分类等场景中有应用。贝叶斯网络模型通过图模型表示变量依赖关系,适用于风险分析等领域。线性和非线性分类器通过线性或非线性决策边界划分数据。非参数辨别分类方法如k近邻算法不限制模型参数数量。特征提取和选择用于数据表示优化,而聚类分析将数据分组为相似性较高的簇。这些主题共同构成了机器学习中重要的方法和技术领域。
2024-11-28 22:03:46 7.24MB 机器学习 python 贝叶斯
1
1. 手动实现循环神经网络RNN,并在至少一种数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 2. 使用torch.nn.rnn实现循环神经网络,并在至少一种数据集上进行实验,从训练时间、预测精度、Loss变化等角度分析实验结果(最好使用图表展示) 3. 不同超参数的对比分析(包括hidden_size、batchsize、lr等)选其中至少1-2个进行分析 4. 用户签到数据实验的难度会稍高一些,若在实验中选用,可酌情加分 5. 手动实现LSTM和GRU并在至少一种数据集进行试验分析 (平台课同学选做,专业课同学必做) 6. 使用torch.nn实现LSTM和GRU并在至少一种数据集进行试验分析 (平台课同学选做,专业课同学必做) 7. 设计实验,对比分析LSTM和GRU在相同数据集上的结果。
2024-08-03 21:28:16 2.37MB 深度学习 Python 循环神经网络
1
零基础入门学习Python(第2版)-微课视频版
2024-07-28 23:58:17 10.87MB python
1
学习python量化交易的代码
2024-07-22 09:24:58 252KB
1
深度学习溺水姿势检测素材是当前人工智能领域的一个重要应用,主要目标是通过计算机视觉技术来识别和预测水下的溺水情况。本数据集包含了532张从网络爬虫获取的水下拍摄的泳姿图片,这些图片可以作为训练深度学习模型的基础素材,帮助我们构建溺水检测系统。 深度学习是一种模仿人脑神经网络结构的机器学习方法,它能够通过大量的训练数据自我学习并改进模型,从而在图像识别、语音识别、自然语言处理等领域展现出强大的性能。在溺水检测中,深度学习模型可以通过对大量泳姿图片的学习,掌握不同泳姿和溺水状态的特征,提高识别的准确性和及时性。 Python是实现深度学习的主要编程语言,它拥有丰富的库和框架,如TensorFlow、Keras、PyTorch等,这些工具极大地简化了模型构建和训练的过程。对于这个溺水姿势检测任务,我们可以利用Python编写数据预处理脚本,将图像数据进行归一化、增强等处理,然后构建深度学习模型进行训练。 溺水检测系统通常基于卷积神经网络(CNN)架构,这种网络擅长处理图像数据。CNN包含卷积层、池化层、全连接层等组件,能够自动提取图像中的关键特征。在训练过程中,模型会逐步学习到溺水和非溺水状态的关键区别,例如人体姿态、水中的动作、面部表情等。在训练完成后,模型可以实时分析摄像头捕获的水下画面,快速判断是否存在溺水风险。 数据集中的每张图片都可能代表一个独特的游泳姿势或溺水状态,比如eb076ba52d156f8fb512fb6ca2fbc64142781e53.jpg、istockphoto-459392451-612x612.jpg等,这些图片在训练过程中会被拆分成输入图像和对应的标签(溺水或非溺水)。通过反向传播和梯度下降等优化算法,模型可以调整其参数以最小化预测错误,从而提高识别精度。 在实际应用中,这样的溺水检测系统可以部署在游泳池、海滩等水域的安全监控设备上,实时监测水面状况,一旦检测到异常情况,可以立即发出警报,减少溺水事故的发生。此外,该系统还可以结合物联网技术,与其他智能设备联动,实现远程预警和应急响应。 这个溺水姿势检测素材集合为开发高效、准确的深度学习溺水检测系统提供了宝贵的数据资源。通过深入研究和优化模型,我们可以构建出能够保障水上安全、挽救生命的人工智能解决方案。
2024-07-04 13:52:47 26.22MB 深度学习 python
1
1、资源内容:机器学习大作业-图像识别-安检识别+实验报告+源代码+文档说明+YOLOv5,python实现 2、代码特点:内含运行结果,不会运行可私信,参数化编程、参数可方便更改、代码编程思路清晰、注释明细,都经过测试运行成功,功能ok的情况下才上传的。 3、适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。 4、作者介绍:某大厂资深算法工程师,从事Matlab、Python、C/C++、Java、YOLO算法仿真工作10年;擅长计算机视觉、 目标检测模型、智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、智能控制、路径规划、无人机等多种领域的算法仿真实验,更多源码,请上博主主页搜索。 -------------------------------------------------------------------------- -
2024-06-16 15:20:59 544KB 机器学习 python
车流量预测任务是一个回归任务,旨在根据区域历史的车流量情况来预测其未来某一段时间的车流量情况。使用的数据为纽约市出租车流量数据。输入为纽约市各区域的历史车流量时间序列,输出为对应各区域的未来车流量的预测值。 纽约出租车流量数据集,时间跨度为从2015年1月1日到2015年3月1日。数据处理成为网格流量数据,时间间隔设定为30分钟。后20天数据被划定为测试集,其余数据为训练集。数据格式:以训练集为例,其shape=(192010202) 代表有1920个时间段,1020个区域,2个特征分别为区域的入流量与出流量
2024-06-01 21:17:29 1.11MB 深度学习 python 数据集
1
⼩甲鱼《零基础⼊门学习Python》全套课后作业及答案 1.⼩甲鱼的课后作业 ⼩甲鱼的课后作业 提取码: 4idx 2.另外赠送⼤家⼀本⾮常实⽤ 另外赠送⼤家⼀本⾮常实⽤Python书籍: 书籍: Python编程:从⼊门到实践 3.再分享⼀本书给⼤家吧,之后⾃⼰渐渐往数据分析和算法⽅向⾛了 再分享⼀本书给⼤家吧,之后⾃⼰渐渐往数据分析和算法⽅向⾛了 利⽤Python进⾏数据分析(第⼆版)_wrapper 书不在多,贵在精,多动⼿,致⼤家永远学不完的编程之路,加油~~~
2024-05-21 20:27:09 39KB python 文档资料
1
百度飞桨学习python机器学习、深度学习资料 【机器学习】GRU:实践-情感分类的另一种方法 【机器学习】LSTM:实践-谣言检测 【机器学习】python复杂操作:实践-爬虫与数据分析 【机器学习】ResNet-50原理:实践-CIFAR10数据集分类 【机器学习】VGGNet原理:实践-中草药分类 【机器学习】Word2Vec实现:实践-基于CBOW和Skip-gram实现Word2Vec 【机器学习】飞桨高层API的实践 【计算机视觉】1.实践:飞浆与python入门操作 【计算机视觉】2.实践:python复杂操作 【计算机视觉】3.理论:计算机视觉概述 【计算机视觉】4.实践:基于深度神经网络的宝石分类 【计算机视觉】5.实践:基于卷积神经网络的美食识别 【计算机视觉】6.实践:基于VGG-16 的中草药识别 等等
2024-05-20 17:30:37 35.42MB paddlepaddle paddlepaddle python 机器学习
1
yolov5单目相机测速测距,测速测距,pyqt,目标检测,深度学习,目标检测接单,yolov5,yolov7,可dai写 扣扣:2046删532除381 语言:python 环境:pycharm,anaconda 功能:可添加继电器或者文字报警,可统计数量 注意: 1.可定制!检测车辆,树木,火焰,人员,安全帽,烟雾,情绪,口罩佩戴……各种物体都可以定制,价格私聊另商! 2.包安装!如果安装不上可以保持联系,3天安装不上可申请退货!
2024-05-07 12:36:57 50.49MB pyqt 目标检测 深度学习 python
1