这是人体关键点检测(人体姿态估计)Android Demo App,更多项目请参考: 人体关键点检测1:人体姿势估计数据集(含下载链接) https://blog.csdn.net/guyuealian/article/details/134703548 人体关键点检测2:Pytorch实现人体关键点检测(人体姿势估计)含训练代码和数据集 https://blog.csdn.net/guyuealian/article/details/134837816 人体关键点检测3:Android实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797 人体关键点检测4:C/C++实现人体关键点检测(人体姿势估计)含源码 可实时检测 https://blog.csdn.net/guyuealian/article/details/134881797
2024-07-02 20:45:17 41.56MB android 人体关键点检测 人体姿态估计
1
matlab改变代码颜色6D物体检测器 对象检测器能够根据深度相机输入识别3D空间中的对象及其姿势。 它基于以下论文: Andreas Doumanoglou,Rigas Kouskouridas,Sotiris Malassiotis,Tae-Kyun Kim CVPR 2016 但已针对各种项目的需要进行了修改。 因此,可能与本文有所不同,并且不能保证可以准确复制本文提供的结果。 不幸的是,用于运行本文实验的所有参数的值均已被覆盖,但是默认值应接近于它们。 但是,应该搜索最适合感兴趣对象的最佳参数值。 如果您使用此源代码在自己的测试方案上评估该方法,请引用上述论文。 请仔细阅读指南,以正确使用检测器。 建立项目 源代码已在Ubuntu 14.04上进行了测试。 以下是所有必需的依赖项: 博客 GFlags OpenMP的 促进 OpenCV(2.4.10) 聚氯乙烯 VTK(5.10) CUDA LMDB 原虫 咖啡(1.7) 安装了所有必需的库之后,请运行以下命令来构建项目: mkdir build cd build cmake .. make 如果未生成错误,则应该已经创建了两
2024-04-15 13:42:18 15.77MB 系统开源
1
这是手部关键点检测Android Demo APP安装包,可在Android手机安装,体检手部关键点检测的效果;更多博文推荐: 手部关键点检测3:Pytorch实现手部关键点检测(手部姿势估计)含训练代码和数据集https://blog.csdn.net/guyuealian/article/details/133277726 手部关键点检测4:Android实现手部关键点检测(手部姿势估计)含源码 可实时检测https://blog.csdn.net/guyuealian/article/details/133277732 手部关键点检测5:C++实现手部关键点检测(手部姿势估计)含源码 可实时检测https://blog.csdn.net/guyuealian/article/details/133277748
2024-01-12 21:15:57 65.98MB android 手部姿态估计
1
Android人体检测和人体关键点检测APP,支持CPU多线程和GPU加速,可实时检测(这是 Demo APP),原文请参考《2D Pose人体关键点实时检测(Python/Android /C++ Demo)》https://panjinquan.blog.csdn.net/article/details/115765863
2024-01-02 17:16:16 106.32MB 人体关键点 人体姿态估计
1
3D人体姿态估计数据集,含2D和3D关键点信息。
2023-12-10 21:54:12 521.43MB 人工智能 姿态估计
1
包含两个数据集:mnist160和imagenet100 三个权重参数文件:yolov8n-seg.pt,yolov8n-cls.pt,yolov8n-pose.pt
2023-09-25 20:35:14 17.09MB 数据集
1
单糖 这是以下论文的代码开发版本: Bugra Tekin,Sudipta N.Sinha和Pascal Fua,“实时无缝单发6D对象姿态预测”,CVPR 2018。 可以在以下找到上述文章的代码库的原始存储库。 介绍 我们提出了一种单发方法,可以同时检测RGB图像中的对象并预测其6D姿势,而无需多个阶段或必须检查多个假设。 我们方法的关键部分是受YOLO网络设计启发的新CNN架构,该架构可直接预测对象3D边界框的投影顶点的2D图像位置。 然后使用PnP算法估算对象的6D姿势。 , 引文 如果您使用此代码,请引用以下内容 @inproceedings {tekin18, TITLE = {{实时无缝单发6D对象姿态预测}},作者= {Tekin,Bugra和Sinha,Sudipta N.和Fua,Pascal}, BOOKTITLE = {CVPR}, 年= {2018} } 执照
2023-04-15 12:53:40 154KB Python
1
使用unity3d和tensorflow实现基于姿态估计的体感游戏-附件资源
2023-04-04 19:46:54 23B
1
DeepLabCut:无需标记的深度学习(动物)姿态估计与行为跟踪
2023-03-20 17:23:38 71.72MB Python开发-机器学习
1
自适应鲁棒性卡尔曼滤波算法在卫星姿态估计中的应用
2023-03-17 21:40:04 2.62MB 研究论文
1