随着商业智能系统和数据挖掘技术的发展,用户的行为数据对企业决策产生了重要的影响。网络电子商务平台可以利用这些数据分析后的结果,对特定的用户推送他们感兴趣的商品,这样能增强用户黏度,提高平台的商业价值。提出一种基于用户行为分析的个性化推荐算法,将用户的行为信息转化为用户评分矩阵,且提出一种改进的正则化非负矩阵分解算法,在原始正则化非负矩阵分解算法的基础上加入偏置信息。改进算法充分挖掘用户在网页上点击、购买、浏览、收藏等行为信息,将用户感兴趣的商品及时推送给用户。实验结果验证了本文所提出的两种算法的有效性和高效性。
1