打开Xcode, 点击 Product -> Scheme -> Edit Scheme 添加两行命令 (1)/Users/ios023/Desktop/xxxxx(项目的绝对路径) (2)-spamCodeOut (垃圾代码的输出路径) Ilslog(分类或扩展对应的名称) 点击运行即可将垃圾代码添加到指定目录 这里的绝对路径是扫描你文件个数以及名称,根据项目里文件个数来添加对应的乐色
2024-12-23 14:36:05 266KB ios
1
垃圾图像分类识别技术详解》 在当今社会,随着环保意识的提高,垃圾分类与处理成为全球关注的话题。其中,利用人工智能技术进行垃圾图像分类识别,是实现高效智能垃圾分类的重要手段。本文将深入探讨这一领域的核心技术和应用,主要围绕基于卷积神经网络(Convolutional Neural Networks, CNN)的垃圾图像分类方法进行阐述。 一、卷积神经网络基础 CNN是一种深度学习模型,因其在图像处理领域的卓越表现而备受青睐。它模拟人脑视觉皮层的工作原理,通过卷积层、池化层以及全连接层等结构,对图像特征进行逐层提取,从而实现对图像的分类和识别。 二、垃圾图像分类挑战 垃圾图像分类面临诸多挑战,包括但不限于: 1. 多样性:垃圾种类繁多,形状、颜色、纹理各异,需要模型具备强大的泛化能力。 2. 数据不平衡:不同类型的垃圾图片数量可能差距巨大,模型训练需处理类别不平衡问题。 3. 角度与遮挡:垃圾图像拍摄角度不一,部分可能被遮挡,影响特征提取。 三、基于Keras的CNN搭建 Keras是一个高级神经网络API,支持TensorFlow、Microsoft Cognitive Toolkit等后端,用于快速构建和训练深度学习模型。在垃圾图像分类中,我们可以用Keras搭建多层CNN模型,如下步骤: 1. 数据预处理:包括图像缩放、归一化、增强等,确保输入到模型的图像具有统一的尺寸和数值范围。 2. 模型架构设计:通常包含卷积层、池化层、激活函数(如ReLU)、Dropout层等,以及全连接层进行分类。 3. 编译模型:设置损失函数(如交叉熵)、优化器(如Adam)和评估指标(如准确率)。 4. 训练模型:通过反向传播算法更新权重,以最小化损失函数。 5. 模型评估与调优:通过验证集检查模型性能,调整超参数,以提升分类效果。 四、模型优化策略 1. 数据扩增:通过旋转、翻转、裁剪等手段增加训练数据多样性,减轻过拟合。 2. 批量归一化:加速模型收敛,提高训练稳定性。 3. 模型融合:结合多个模型的预测结果,提高整体性能。 4. 轻量化模型:针对资源有限的设备,可以采用MobileNet、ShuffleNet等轻量级网络结构。 五、实际应用与前景 垃圾图像分类识别技术已广泛应用于智能垃圾桶、垃圾分类APP等领域,有效提升了垃圾分类效率和准确性。未来,随着AI技术的进一步发展,我们有望看到更智能、更精准的垃圾分类解决方案。 总结,垃圾图像分类识别是人工智能与环保领域的重要交叉点。通过运用卷积神经网络,特别是借助Keras框架,我们可以构建出高效的分类模型,应对实际应用中的挑战。这不仅有利于环境保护,也有助于推动AI技术在更多领域的创新应用。
2024-12-10 21:58:27 83.19MB
1
安卓期末大作业-垃圾分类助手(免积分下载) 压缩包内包含源代码,项目文档,apk文件,运行各个界面截图。app使用的是sqlite数据库,使用的核心类及其组件:Base Adapter,Fragment,View Pager,Alert Dialog.Builder,Option,Animation Draw able(关键帧动画),Media Player(视频),Count Down Timer(倒计时 广告页用),Spinner等 该分类助手的功能是管理员先登录进入后台界面,将数据录入数据库,管理员可进行增删改查操作,用户可在前台页面通过垃圾分类查垃圾也可通过垃圾查分类,可以浏览后台管理员录到数据库中的新闻。 该分类助手在上传头像时是通过跳转到手机图库选择照片,然后保存的时候是通过该图片的uri录入数据库,显示图片则是从数据库读取uri并显示。 以上所述功能均实现正常 详见 https://blog.csdn.net/weixin_59538558/article/details/131029604
2024-11-09 19:00:05 55.02MB android
1
陶晶驰智能垃圾桶串口屏
2024-10-21 15:31:55 43.26MB
1
艾科瑞特科技:计算机视觉-通用版垃圾分类图像分类(265种类别) 关键词:目标检测、目标跟踪、图像识别、图像分类、自然语言处理、自然语言分析、计算机视觉、人工智能、AIGC、AI、大模型、多模态大模型、API、Docker、镜像、API市场、云市场、国产软件、信创 内容摘要: 基于265类生活垃圾标签体系和15万张图片数据的垃圾分类图像分类模型,具有广泛的应用场景。 居民小区垃圾分类指导:提供实时图像识别与分类建议。 公共场所垃圾投放指引:协助公众正确分类投放垃圾。 环卫工人垃圾收集辅助:快速识别与分拣不同种类垃圾。 城市管理部门垃圾监管:利用图像识别进行垃圾分类情况分析。 教育机构环保教学:利用垃圾分类图像进行科普教育。 社区宣传活动:展示不同垃圾种类的识别与分类方法。 垃圾处理厂分拣系统:自动化识别与分类垃圾,提高处理效率。 垃圾分类APP开发:为用户提供垃圾分类查询与指导服务。 垃圾分类竞赛与游戏:通过图像识别技术增强娱乐与教育性。 回收站点垃圾收集:精确分类回收各类可回收垃圾。 家庭垃圾分类助手:帮助家庭成员正确分类生活垃圾。 餐饮行业垃圾分类管理:确保厨余垃圾得到妥善处理。
2024-10-17 12:35:08 1.32MB 计算机视觉
1
python 资源内容: 1、垃圾填埋场地选址(jupyter notebook 实现)。中文描述Python代码实现的过程。 2、Landfill_site_selection_gdal-main。Python实现代码(直接运行)。
2024-10-16 18:03:52 13.16MB python
1
基于python和贝叶斯的简单垃圾邮件分类源码(作业).zip
2024-06-25 10:35:03 17.32MB python 垃圾邮件分类
1
将属于相同类别的垃圾图片放在一个文件夹中,在 garbage/ 目录下总共有40个文件夹。 第一大类:其他垃圾/ 0: "一次性快餐盒",1: "污损塑料",2: "烟蒂",3: "牙签",4: "破碎花盆及碟碗",5: "竹筷" 第二大类:厨余垃圾/ 6: "剩饭剩菜",7: "大骨头",8: "水果果皮",9: "水果果肉",10: "茶叶渣",11: "菜叶菜根",12: "蛋壳",13: "鱼骨" 第三大类:可回收物/ 14: "充电宝",15: "包",16: "化妆品瓶",17: "塑料玩具",18: "塑料碗盆",19: "塑料衣架",20: "快递纸袋",21: "插头电线",22: "旧衣服",23: "易拉罐",24: "枕头",25: "毛绒玩具",26: "洗发水瓶",27: "玻璃杯",28: "皮鞋",29: "砧板",30: "纸板箱",31: "调料瓶",32: "酒瓶",33: "金属食品罐",34: "锅",35: "食用油桶",36: "饮料瓶" 第四大类:有害垃圾/ 37: "干电池",38: "软膏",39: "过期药物"
2024-06-17 19:45:46 538.55MB 垃圾分类 数据集
1
垃圾识别代码数据集
2024-06-04 18:15:41 125.71MB 数据集
1
基于tensorflow框架(模型使用CNN)进行垃圾邮件分类(包含了中文垃圾邮件分类和英文垃圾邮件分类)
2024-05-24 20:30:14 1.71MB tensorflow tensorflow
1