在详细讨论短距离可见光音频传输系统设计时,我们首先要明白系统设计所涉及的基础技术概念以及实现该系统的相关技术细节。 可见光通信(Visible Light Communication,VLC)是一种利用可见光波段进行信息传输的技术,与传统的无线电波传输方式相比,它有频谱资源丰富、通信安全、免受电磁干扰、可实现高速传输等特点。短距离可见光音频传输系统,正是应用在较近距离内的可见光通信技术,用于传输音频信号。 接着,音频信号在系统中的传输流程大致为:音频信号的采集、编码、调制、传输以及接收端的解调、解码、还原为音频信号的过程。这个过程中可能涉及到数字信号处理技术和模拟信号处理技术。 使用LabVIEW软件进行系统设计的优势在于LabVIEW是一个图形化的编程语言,它支持数据流编程,特别适合于模拟和数字信号的处理。LabVIEW中提供了丰富的函数库,包括信号处理、声音分析和生成、通信协议等,可以用来设计和模拟短距离可见光音频传输系统。同时,LabVIEW可以与多种硬件设备配合使用,比如声音采集卡、光调制解调器等,实现信号的采集、处理和传输。 系统设计的细节可能会包括以下方面: 1. 音频信号的采集:通过麦克风等声音采集设备获取声音信号,并通过声音采集卡转换为数字信号。 2. 音频信号的编码:采用适当的编码算法对数字音频信号进行编码,如脉冲编码调制(PCM)等,目的是压缩数据,提高传输效率。 3. 音频信号的调制:将编码后的音频信号调制到可见光载波上,常用调制方式有调幅(AM)、调频(FM)、脉冲位置调制(PPM)等。 4. 可见光信号的传输:将调制后的可见光信号通过LED等光源发射到传输介质(空气中),到达接收端。 5. 可见光信号的接收:使用光敏探测器接收可见光信号,并将其转换为电信号。 6. 音频信号的解调:在接收端对电信号进行解调,提取出音频信号。 7. 音频信号的解码和输出:对解调后的信号进行解码还原成模拟音频信号,并通过扬声器等输出设备播放出来。 在设计过程中,还需要考虑诸多因素,如传输距离、信号质量、传输速率、环境光的干扰、设备的稳定性和可靠性等。 由于给出的【部分内容】中包含了很多无法识别的字符,这些字符并不能提供有关设计细节的有效信息。所以,在实际设计短距离可见光音频传输系统时,需要将上述步骤和理论结合具体的LabVIEW软件操作和硬件设备的特性进行综合考虑。 此外,LabVIEW平台对开发周期的缩短、对复杂算法的快速实现以及对系统原型的模拟具有独特优势,通过其提供的模块化编程思想,可以有效地对各个阶段的信号处理和系统控制逻辑进行编程,保证系统设计的高效性和精确性。设计师可以在LabVIEW环境中进行快速的原型设计和算法测试,及时发现并解决问题,优化系统性能。 短距离可见光音频传输系统设计是一个综合了音频信号处理、信号调制解调技术和LabVIEW编程应用的复杂过程。通过合理的设计和实现,可以开发出一个性能优良的短距离可见光通信系统。
2025-11-18 17:32:30 148KB LabVIEW
1
以钛酸丁酯(C16H36O4Ti)和硫脲(SC(NH2)2)为前驱体制备溶胶,通过旋涂方法制备Ti O2光催化剂薄膜;利用XRD、SEM、XPS、UV-vis等手段进行结构表征和光吸收性能测试,并通过降解亚甲基蓝溶液评定其可见光下的光催化活性。结果表明,以硫脲为前驱体时可实现硫氮元素在Ti O2中的共掺杂;掺杂后的Ti O2薄膜对可见光有明显的吸收,并在可见光下对亚甲基蓝溶液显示出较高的降解率,其中掺杂量质量分数为3.0%的薄膜样品光催化活性最好。在本实验条件下,经可见光照射7 h后,亚甲基蓝溶液降解率接近100%。分析表明,硫元素以S6+状态取代Ti4+存在于Ti O2晶格,氮元素则以间隙和取代的方式存在。硫氮元素的协同作用在Ti O2的禁带中引入杂质新能级,使Ti O2带隙变窄,因此对可见光吸收并显示出强的可见光催化活性。
1
可见光通信(Visible Light Communication,VLC)是一种利用可见光频谱进行数据传输的技术。由于可见光通信具有支持通信和照明同时进行的能力,因此被认为是一种在地下矿井等复杂环境中实现有效通信的潜在接入技术。地下矿井环境不仅狭窄且复杂,而且在安全性和可靠性方面有着极高的要求。因此,准确地对VLC系统的信道特性进行建模,对于设计和评估VLC系统性能至关重要。 在地下矿井中,可见光通信面临着与其他环境不同的独特挑战。由于矿井内部复杂的空间结构和各种干扰的存在,VLC信道的路径损耗特性和时延扩散特性需要详细研究。路径损耗指的是信号在传输过程中由于传播距离和障碍物等因素造成的信号强度衰减。时延扩散描述的是信号在不同路径上传播到达接收端的到达时间差异,它会影响信号的接收质量。 本文介绍了一种专门针对地下矿井环境的可见光通信路径损耗信道模型。该模型基于递归信道模型,并通过考虑矿井巷道和工作面环境中的三种不同轨迹来确定路径损耗指数。考虑到不同数量的发射器,文中研究了视距(Line-of-Sight,LoS)和非视距(Non-Line-of-Sight,NLoS)两种通信场景。研究结果表明,在应用曲线拟合技术时,路径损耗在对数域上表现为线性行为。进而,导出了路径损耗与距离关系的表达式,并研究和分析了均方根(Root Mean Square,RMS)时延扩散。 在地下矿井可见光通信中,路径损耗信道模型的准确建立对于通信系统的设计和性能评估极为重要。路径损耗模型可以基于不同的传输环境和条件,通过测量和仿真等方法得到。在模型的建立过程中,需要考虑多种因素,如发射器和接收器的高度、矿井内障碍物的存在、以及光线在不同介质中的反射和散射等。 此外,研究还涉及到了时延扩散问题,即信号经过多个路径传输后到达接收端的时差问题。时延扩散对通信系统同步和信号重建至关重要,较大的时延扩散会导致信号失真和通信质量下降。通过分析RMS时延扩散,可以为设计通信系统提供依据,以优化系统参数,减少时延扩散带来的负面影响。 在地下矿井通信中,可见光通信系统不仅可以提供数据通信,还能作为照明设备,这为矿井通信提供了一种新的视角。由于矿井中存在有毒气体和尘埃,这要求通信系统必须具备高可靠性和稳定性。此外,可见光通信还具有安全性高的特点,因为它利用的是不可见光谱之外的频段,与无线电波通信相比,可见光通信的信号不会穿透矿井壁,降低了在其他区域产生干扰的风险。 地下矿井可见光通信的路径损耗信道模型的研究是实现地下矿井内通信系统设计与性能评估的关键。通过精确的信道建模,可以更好地理解地下矿井中可见光通信的物理传播现象,从而设计出更加稳定可靠的通信系统,满足矿井内通信对安全性和可靠性的严格要求。随着技术的不断发展,可见光通信在地下矿井中的应用将越来越广泛,对于提高矿井作业效率、保障矿工安全具有重要的意义。
2025-10-12 14:54:51 401KB 研究论文
1
资源下载链接为: https://pan.quark.cn/s/55b326f106a2 (最新版、最全版本)可见光/红外光双模态目标检测: C2Former在MMDetection(Cascade-RCNN)上的实现 在人工智能与计算机视觉领域,目标检测一直是一个研究热点。随着技术的进步,双模态目标检测由于其在多种条件下的良好表现,越来越受到研究者们的重视。双模态目标检测通常涉及到不同类型的传感器数据,比如可见光和红外光图像的融合。这种方法能够弥补单一模态的不足,提供更为准确和鲁棒的目标检测结果。 本篇文档的主题是“可见光/红外光双模态目标检测:C2Former在MMDetection(Cascade-RCNN)上的实现”,从标题可以看出,该文档关注的是一个特定的算法C2Former在流行的开源目标检测框架MMDetection上,基于Cascade-RCNN架构的应用。MMDetection是一个由商汤科技等团队共同开发的深度学习目标检测框架,它支持多种目标检测算法,并且易于扩展。而Cascade-RCNN是单阶段目标检测网络的增强版,通过构建级联的RPN网络和检测头,来提高检测的准确性和召回率。 C2Former算法可能是一种结合了深度学习和双模态信息处理的新方法,它的引入可能会进一步增强目标检测系统对不同类型输入图像的适应性和性能。文档中提到的“可见光/红外光双模态目标检测”是指利用可见光图像和红外图像两种不同波段的图像数据进行目标检测。可见光图像容易受到光照条件的影响,而红外图像不受光照条件限制,因此两者结合可以在各种复杂环境中提供更为稳定的目标检测性能。 在本篇文档中,详细介绍了如何将C2Former算法实现于MMDetection框架中,并特别针对Cascade-RCNN架构进行了优化。这种结合能够充分利用MMDetection的强大功能和扩展性,同时借助C2Former的创新点,对双模态数据进行更有效的融合与处理。 文档还提供了一个资源下载链接,指引有兴趣的研究人员或开发者下载最新的完整版本源码。通过这种方式,研究者可以复现相关的研究成果,进一步验证C2Former在实际应用中的有效性,并进行更深入的研究和改进。 从文件名称列表中,我们可以看出文档的命名非常直观,明确指出了“可见光红外光双模态目标检测:C2Former在MMDetection(Cascade-RCNN)上的实现”,这不仅反映了文档的主要内容,也方便了文件的管理和检索。文档可能是以文本形式对相关算法实现过程进行了详细的说明,方便读者理解和学习。 这篇文档对于目标检测领域尤其是双模态目标检测的研究具有重要参考价值。它不仅展示了如何在现有的成熟框架中集成新的算法,也为双模态目标检测的研究提供了新的思路和方法。通过该文档的指导,研究者们能够快速上手并参与到相关技术的研究与应用开发中。
2025-09-11 16:56:52 400B 源码 完整源码
1
如何使用Matlab代码计算二氧化钒(VO2)在可见光到近红外波段的折射率和介电常数参数,并通过COMSOL软件进行仿真验证。首先,文中解释了VO2在不同温度状态下的介电常数模型,即低温下的Lorentz模型和高温下的Drude模型。接着,提供了具体的Matlab代码用于生成折射率数据,并指导如何将这些数据导出为文本文件以便于COMSOL读取。最后,阐述了COMSOL仿真的具体步骤,包括材料库创建、光学属性配置以及常见问题解决方法。此外,还附带了一个详细的20分钟教学视频链接,帮助用户更好地理解和掌握整个流程。 适合人群:对光电材料及其仿真感兴趣的科研工作者、研究生以及相关领域的工程师。 使用场景及目标:适用于希望深入了解VO2光学特性的研究人员,特别是那些想要探索VO2在智能窗和光学开关应用潜力的人群。通过本教程的学习,可以掌握从理论计算到实际仿真的全过程,提高研究效率和技术水平。 其他说明:文中不仅提供了完整的代码示例,还包括了针对初学者的细致讲解,确保即使是新手也能顺利完成实验。同时,提供的视频教程进一步增强了学习体验,使复杂概念变得通俗易懂。
2025-09-06 17:17:32 241KB
1
1nm间隔统计可见光波段380~700波长与色坐标与明视觉函数对照表。其中色度坐标数据来源使用Tracepro逐个波长仿真的颜色。明视觉函数来源于网络资源。
2025-07-08 10:47:24 20KB CIE1931
1
针对可见光与SAR图像灰度差异大,共有特征提取难的问题,提出了一种基于k-均值聚类分割和形态学处理的轮廓特征配准方法。利用k-均值聚类算法对两类图像进行分割,得到图像分割区域;通过形态学处理,有效减少SAR图像斑点噪声影响,准确提取两类图像的封闭轮廓;采用轮廓不变矩理论,引入矩变量距离均值、方差约束机制和一致性检查的匹配策略,获取最佳匹配对,实现了两类图像的配准。通过实验,三组图像的配准精度分别达到0.3450、0.2163和0.1810,结果表明该法可行且能达到亚像素的配准精度。
2025-07-04 11:04:00 4.19MB 机器视觉 图像配准
1
可见光通信(Visible Light Communication, VLC)是一种利用可见光谱进行数据传输的技术,与传统的无线电频率通信相比,它具有不占用无线电频谱、无电磁干扰、安全性高等特点。本资料包主要关注的是基于大功率白光LED的VLC系统,以及如何结合51单片机实现接收和发送数据。 我们要理解51单片机在可见光通信中的作用。51单片机是8位微控制器的一种,因其内核为Intel 8051而得名,广泛应用于各种嵌入式系统中。在VLC系统中,51单片机作为核心控制单元,负责处理数据编码、调制和解调,以及驱动LED灯进行通信。 1. 数据编码与调制:在发送端,51单片机会接收到待发送的数据流,这些数据需要被转换成光信号。常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。在VLC中,脉冲宽度调制(PWM)是最常用的方式,通过改变LED亮度的持续时间来表示二进制数据的1和0。 2. 发送原理图:LED作为一个光源,其亮度可以被51单片机精确控制。通过编程,51单片机会根据预设的调制方式,快速开关LED,从而将数字信号转换为光信号。发送原理图通常包括数据接口、51单片机、驱动电路和LED光源部分,其中驱动电路用于确保LED能承受快速的开关操作且保持稳定亮度。 3. 接收原理图:在接收端,通常会使用光敏传感器(如光电二极管或CMOS图像传感器)捕获由LED发出的光信号,并将其转化为电信号。51单片机接收这个电信号,然后进行解调恢复原始数据。解调过程与调制相反,根据接收到的光强度变化,判断出1和0。接收端的原理图包括光敏传感器、前置放大器、滤波器和51单片机。 4. 网络连接:虽然51单片机处理能力有限,但可以通过扩展接口如串行通信接口(UART)或通用异步收发传输器(USART)与其他设备连接,形成简单的网络结构。例如,多个VLC节点可以通过UART互相通信,构建一个简单的光通信网络。 5. 光通信的优势与应用:VLC技术适用于无线通信受限的环境,如医院、飞机舱内等,避免了电磁干扰。此外,随着智能家居的发展,VLC也被用于智能照明系统,实现照明与通信的双重功能。 本压缩包可能包含的文件有电路设计图、源代码、原理图等,这些文件可以帮助读者深入理解51单片机如何驱动大功率白光LED进行可见光通信,以及接收端如何解析这些光信号。通过学习这些资料,开发者可以自行搭建VLC系统,进行实验验证和应用开发。
2025-06-03 11:01:09 22.25MB 51单片机 网络 网络
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-04-23 00:50:47 4.3MB matlab
1
CSDN Matlab武动乾坤上传的资料均是完整代码运行出的仿真结果图,可见完整代码亲测可用,适合小白; 1、完整的代码内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-16 15:51:38 12KB matlab
1