参考文献:   [1]  刘自发,于普洋,李颉雨.  计及运行特性的配电网分布式电源与广义储能规划    [J].  电力自动化设备,  2023,  43  (03):  72-79.     [2]  任智君,郭红霞,杨苹,等.  含高比例可再生能源配电网灵活资源双层优化配置    [J].  太阳能学报,  2021,  42  (09):  33-38.     [3]  高红均,刘俊勇.  考虑不同类型DG和负荷建模的主动配电网协同规划    [J].  中国电机工程学报,  2016,  36  (18):  4911-4922+5115.           分析系统灵活性供需关系,建立灵活资源运行-规划联合优化双层配置模型。运行层引入灵活性不足率作为系统灵活性评价指标,将网损和弃风弃光量计入经济惩罚,以系统年运行成本最优为目标;规划层引入系统综合安全性指标对系统安全性进行评估,以系统年综合成本最优为目标。采用粒子群优化算法对双层配置模型进行求解。最后,利用IEEE 33节点配网系统对算例进行仿真,结果验证了所提运行-规划联合双层配置模型能有效减少网损和
2024-04-15 18:22:59 3.41MB matlab 粒子群算法
1
双层优化问题(Bilevel Programming Problems),也被称为双层规划,最早由Stackelberg与1934年在经济学相关研究中提出,因此也被称为Stackelberg问题。双层规划问题一般具有层次性、独立性、冲突性、优先性和自主性等特点。 对于小规模线性双层优化问题,通过迭代也无法求出问题的解,实际我们要解决的问题一般都不会这么简单,通常规模比较大,或者模型中存在非线性,一般来说很难通过简单的迭代法进行求解,需要考虑其他方法。实际上,双层优化问题是一个 NP 难问题,通常采用的方式是利用 KKT(Karush-Kuhn-Tucker)条件将双层优化转换为单层优化问题。 本文介绍了双层优化的原理与求解方法,详细介绍了KKT条件在双层优化中的使用方法,并提供了相应的matlab代码供参考学习。
2023-05-26 10:23:49 4.34MB matlab
1
除了数学规划方法之外,还可采用智能优化算法求解双层优化问题,一般在上层优化中采用智能优化算法,下层优化使用数学规划方法;也可以在上下层优化中都采用智能优化算法,这篇博客将进行详细介绍。算例依旧使用上面两篇博客中的线性双层优化问题,由于这个优化问题比较简单,我们采用最基础的粒子群算法进行求解。​ 资源包括三个部分: 1.基础粒子群算法的matlab代码 2.采用粒子群算法求解带约束的优化问题matlab代码 3.采用粒子群算法求解双层优化问题的matlab代码 智能优化算法无法避免的问题,即使是一个非常简单的目标函数,求出的结果也无法保证是全局最优,那么当目标函数变复杂时,情况将会更糟糕。现在对智能优化算法的研究非常多,各种动植物园算法、各种改进都层出不穷,但还是无法从根本上解决算法无法保证全局收敛的问题。         所以,只有在数学模型比较复杂,非线性条件很多,而且对结果的误差是可以接受的情况下,才建议使用智能优化算法进行求解。
2023-05-22 17:23:33 337KB matlab 算法 软件/插件
1
智能优化算法-双层优化算法】基于双层优化算法求解多目标优化文题
2022-12-27 17:07:21 74KB matlab 算法 源码软件 开发语言
双层优化模型,求解思路是:首先对上层的决策变量编码,代人下层规划模型,通过求解下层模型的决策变量值,代入上层模型计算适应度值,然后进行交叉、变异、选择操作,最后求出最优解
2022-10-27 09:57:24 2KB 双层 双层_规划 双层优化 双层决策
1
协同移动边缘计算中联合卸载决策和资源分配的双层优化方法
1
针对综合能源系统规划运行时缺乏对负荷、可再生能源预测误差和购能价格波动不确定性的考虑,构建了基于粒子群优化-区间线性规划的双层优化模型,用于求解计及不确定性的综合能源系统规划问题。为了说明所提优化配置模型能够显著提高系统运行的灵活性,给出了评价系统参与需求响应项目的潜力指标,量化分析了系统在响应电网削负荷指标和应对购能价格变化方面的优势。算例结果不仅验证了所提模型的有效性和可行性,还表明了在能源互联替代的背景下,天然气价格和电负荷的波动直接影响能源服务公司的收益区间,可通过所提模型优化配置各类储能设备以提高能源利用率、抑制系统运营收益的波动。
1
matlab程序(yalmip+cplex)复现自《基于双层优化的微电网系统规划设计方法_刘振国》 规划设计是微电网系统核心技术体系之一。从分布式电源的综合优化(组合优化、容量优化)和分布式电源间的调度优化两个方面对其展开研究。根据分布式电源特性,提出了适用于并网型微电网系统和独立型微电网系统的双层优化规划设计模型。上层优化采用基于 NSGA-II 的多目标遗传算法计算系统最优配置;下层优化采用混合整数线性规划算法(MILP)计算系统最优运行方案。运用所建立模型,分别针对并网型和独立型微电网系统作了案例计算, 验证了所提方法的正确性。 关键词:微电网;双层优化;规划设计;MILP
2022-03-19 20:23:14 5.8MB 能源 综合能源
混合储能兼具能量型储能与功率型储能的优势,针对混合储能在风电平抑中的配置问题,提出了一种基于元模型优化算法的混合储能双层优化配置方法。首先,利用小波分解对风电功率的原始数据进行分解,得到混合储能需要平抑的功率。然后,针对功率分配策略对混合储能容量配置的影响问题,提出一种混合储能容量嵌套式双层优化配置方法。该方法的内层为混合储能功率优化分配策略,以荷电状态、充放电功率为约束条件,以蓄电池总体充放电功率最小为目标函数,以提高蓄电池的使用寿命;外层以最小容量、最小功率为约束条件,以混合储能的全寿命周期年均成本最小为目标函数。针对多变量、非线性、计算密集型双层优化方法具有求解复杂、计算时间长等问题,提出基于元模型优化算法的优化求解方法。算例分析结果表明,所提优化配置方法可以在保持混合储能经济性最优的同时,有效避免蓄电池频繁充放电,从而提高了其使用寿命;相比于传统的启发式求解方法,基于元模型优化算法的优化求解方法的计算速度更快,所得优化配置结果更精确。
1
综合能源系统自由度分析相关数据
2022-02-08 09:03:46 27KB 综合能源 双层优化
1