现阶段用于激光谐振腔的仿真软件多种多样,但大多已是集合而成,用户无法了解其详细内容。 本代码包(ABCDRez)是基于MATLAB语言的激光高斯光束传输(Laser Gaussian Beam Propagation)及激光谐振腔仿真(Laser Resonator Simulation)代码包。文章使用高斯光束描述激光,简单介绍了热效应(Thermal Effect)、腔内非线性变换(Nonlinear Frequency Transformation),主要介绍了光束的调节与匹配(Beam Adjusting and Matching)、驻波谐振腔(Standing Stable Resonator)、行波谐振腔(Traveling Stable Resonator)相关内容。用接近数学表达式的自然化语言,使用户更易学习、掌握及灵活运用。 其核心内容可以参见吕百达教授著《激光光学 光束描述、传输变换与光腔技术物理》、reZonator软件官网、羊国光教授等著《高等物理光学》、李港教授著《激光频率的变换与扩展》、Walter Koechner著《固体激光工程》等。
2025-02-13 20:15:19 27.34MB matlab
1
COMSOL光学模型:单向出射LED物理模型仿真
2025-02-11 09:01:26 110KB 开发语言
1
CST仿真设计:理论与实践》是一本由清华大学出版社出版的经典书籍,系统性地讲解了CST仿真软件的理论基础与实际应用。本书内容涵盖了CST仿真的基本原理、关键技术、工程案例及实操方法,为读者提供了从入门到精通的全面指导。书中通过大量实例,深入解析CST在电磁仿真中的应用,如天线设计、微波器件仿真、电磁兼容分析等,帮助工程师和学生快速掌握CST软件的操作技巧与应用能力。本资源包含完整电子版,适合从事电磁仿真设计的工程师、科研人员以及学习CST的学生使用,是进行CST软件学习和工程实践的不二之选。同时,该电子书提供了详尽的案例解析,可供直接参考或作为仿真项目的指导资料,帮助读者提升仿真效率,解决实际问题。
2025-01-26 21:52:15 511.99MB 仿真设计
1
利用LabVIEW提供的虚拟仪器开发系统集成环境,将智能仪器同电工实验结合起来,成功地实现了虚拟实验室教学系统的滤波器部分,该项应用发挥了虚拟仪器在分析、测量等方面的优势。在大学教学中通过引入基于LabVIEW虚拟仪器的教学,可以充分利用计算机来实现和扩展传统仪器的功能,促进虚拟仪器在教学、实验和工程领域的推广。 【LabVIEW在智能虚拟仪器仿真中的应用】 LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是美国国家仪器(NI)公司开发的一种基于图形化编程语言(G语言)的虚拟仪器软件开发工具。它允许用户在通用计算机平台上自定义和设计仪器的测试功能,以满足特定的测试需求。这一技术的核心理念是“软件即仪器”,强调了软件在实现仪器功能中的关键作用。 LabVIEW具有强大的内置功能,涵盖了仿真、数据采集、仪器控制、测量分析和数据显示等多个方面。它的编程环境包括前面板、框图程序和图标/接线端口三部分。前面板模拟真实仪器的界面,框图程序则通过G语言控制前面板上的对象,图标/接线端口则用于模块化编程,创建可重用的子程序。 在电工实验中,LabVIEW被用来构建虚拟滤波器系统,以演示和分析滤波器的工作原理。例如,低通滤波器、谐振滤波器和有源滤波器的电路模型可以通过LabVIEW的公式节点(subVI)实现。这些公式节点内嵌了相应的数学表达式,如输入输出函数,用于计算滤波后的信号。用户可以根据实际的电阻、电容或电感值调整参数,观察滤波效果。 低通滤波器利用电感和电容对不同频率信号的阻抗特性,去除高频成分,保留低频成分。谐振滤波器则利用并联谐振电路在特定频率下呈现极高阻抗的特性,实现对特定频率信号的过滤。有源滤波器由运算放大器和电容、电阻组成,无需电感,且通常具有较好的滤波性能。 在LabVIEW中,用户可以通过设置不同的信号源(如正弦波),调整采样点数,然后将滤波器的参数(电阻、电容值)输入到公式节点,观察滤波后的信号波形。通过这种方式,学生可以直观地理解滤波器的幅频特性,并进行实验验证。 虚拟仪器技术通过LabVIEW的使用,解决了实验室设备不足的问题,使得学生能够在计算机上进行多次实验,提升对理论知识的理解和实践技能。同时,它也为设计性实验提供了可能性,有助于培养学生的创新思维和动手能力。随着技术的发展,LabVIEW在教学、实验和工程领域的应用越来越广泛,成为现代教育和科研的重要工具。
2025-01-22 12:07:24 907KB LabVIEW 智能虚拟仪器 电子竞赛
1
四旋翼飞行器模型预测控制仿真带PPT 四旋翼无人机 四旋翼飞行器模型预测控的MATLAB仿真,纯M代码实现,最优化求解使用了CasADi优化控制库(绿色免安装)。 CasADi我已下到代码目录里,代码到手可直接运行。 运行完直接plot出附图仿真结果。 配套30页的ppt,简介了相关原理与模型公式,详见附图。 关联词:无人机轨迹跟踪,无人机姿态控制, MPC控制。
2025-01-21 22:43:23 1.51MB 哈希算法
1
FFT_Test.zip, fpga仿真实现求解信号的FFT和IFFT 使用软件:Vivado2018.3; 功能说明:输入待测试信号数据,输出经过FFT后的频域信号, 以及频域信号经IFFT还原后的信号(使用FFT的IP核实现) 包含:设计文件和仿真文件,以及测试数据生成的Matlab代码。 参数:1024点的16位待测试数据输入,50MHz采样率的5MHz和8MHz正弦波的混合信号输入。 使用需修改仿真文件到所放置的文件夹:$readmemb("D:/Vivado_Exp/00_Test/FFT_Test/fft_data.txt", memory); // 测试数据所在文件夹
2025-01-19 13:55:48 412.62MB fpga开发
1
在本文中,我们将深入探讨如何使用粒子群优化算法(Particle Swarm Optimization, PSO)来优化波束形成技术。波束形成是一种信号处理方法,常用于雷达、声纳、无线通信等领域,通过调整天线阵列的权重和相位来集中信号能量,提高目标检测和定位的性能。 我们要理解粒子群算法的基本原理。PSO是由Kennedy和Eberhart在1995年提出的,灵感来源于鸟群和鱼群的集体行为。它是一种全局优化算法,通过模拟群体中的粒子在多维空间中寻找最优解的过程。每个粒子代表一个可能的解决方案,其位置和速度由算法动态更新,根据个体最好位置和全局最好位置进行调整,逐步逼近全局最优解。 在波束形成中,优化的目标通常是最大化信号增益或最小化干扰功率。这涉及对天线阵列中每个单元的幅值和相位进行调整。粒子群算法可以有效地搜索这个参数空间,找到最佳的幅值和相位配置。在实际应用中,优化过程通常包括以下步骤: 1. 初始化:设定粒子的数量、每个粒子的位置(即幅值和相位参数)以及初速度。 2. 计算适应度函数:根据当前的幅值和相位配置,计算波束形成的性能指标,如信号增益或信干比。 3. 更新个体最好位置:如果新计算的适应度优于粒子以往的最佳适应度,则更新粒子的个体最好位置。 4. 更新全局最好位置:比较所有粒子的个体最好位置,选择其中适应度最高的作为全局最好位置。 5. 更新速度和位置:根据公式更新每个粒子的速度和位置,这个过程包含对个体最好位置和全局最好位置的追踪。 6. 迭代:重复步骤2-5,直到满足停止条件(如达到最大迭代次数或适应度收敛)。 在"基于粒子群算法的波束形成优化-仿真实践博文对应的代码"中,我们可以预期找到实现上述步骤的Python或其他编程语言代码。这些代码可能包含以下几个关键部分: 1. 粒子类定义:包含粒子的位置、速度、个体最好位置和适应度值等属性。 2. 初始化函数:生成初始粒子群。 3. 适应度函数:计算特定波束形成配置的性能指标。 4. 更新规则函数:更新粒子的速度和位置。 5. 主循环:执行迭代过程,更新并比较个体和全局最好位置。 6. 结果输出:最终的最优解(即最佳的幅值和相位配置)及相应的性能指标。 通过实践这些代码,读者不仅可以理解PSO如何应用于波束形成,还能掌握如何将优化算法与具体工程问题相结合。同时,这种实践也可以帮助我们了解优化过程中可能遇到的问题,如早熟收敛、局部最优陷阱等,并探索改进策略,如混沌粒子群、社会粒子群等。 粒子群算法为波束形成提供了一种有效的优化手段,通过模拟自然界中的智能行为,能够在复杂的空间中找到优良的解决方案。结合代码实践,我们可以更好地理解和应用这一方法,提升波束形成系统的性能。
2025-01-10 17:55:37 12KB 波束形成 粒子群算法
1
在进行FPGA设计与开发的过程中,仿真验证是不可或缺的一环,尤其当涉及到IP核,比如Altera三速以太网IP核时,仿真就显得尤为重要。Quartus II是Altera公司推出的一款综合性的FPGA设计软件,它集成了逻辑设计、时序分析和布局布线等多个环节。Modelsim-Altera则是与Quartus II配套的仿真工具,用于验证逻辑设计的正确性。 在Quartus II 15.0版本中,仿真流程中一个重要的步骤是设置NativeLink。NativeLink能够将Quartus II工程文件与Modelsim-Altera仿真工具进行关联,以便于用户能够更加方便地进行仿真验证。在编译完成,没有错误的情况下,我们可以通过以下步骤来设置NativeLink: 点击Quartus II界面中的"Assignments" -> "Settings",在弹出的对话框中选择"EDA Tool Settings"(红框1处),接着选择"Simulation"(红框2处)。在设置过程中,需要核对红框3处和4处是否与图上设置的一致。随后,勾选红框5处的"Compile testbench"选项,点击红框6处的"Test Benches"以进入新的testbench设置窗口。 在testbench设置窗口中,点击"New"创建一个新的Testbench设置脚本。然后,点击NewTestBenchSettings选项卡中的Filename一栏最右侧的三个小点(红框1处所示)。在弹出的文件选项卡中,定位到工程目录下的"_testbench/testbench_verilog/"目录下,选择"_tb.V"文件并Open。返回到NewTestBenchSettings选项卡中后,点击Add将"_tb.v"添加进去。 接下来,需要再次点击那三个小点,进入文件选择选项卡中,并定位到工程目录下的"_testbench/testbench_verilog/models"文件夹中,选择除以"timing"开头的文件以外的其他所有文件。点击Open。这些文件是为了配合仿真TSE IP核而存在的仿真模型,它们组合在一起相当于虚拟了一个物理的网络收发器PHY,使得我们可以模拟真实的板级环境进行仿真测试。 在NewTestBenchSettings选项卡中,Testbench一栏中输入"_tb",而TopLevelmoduleintestbench一栏中输入"tb"。需要注意的是,尽管文件名字是"_tb.V",但文件中的testbench顶层实体名字仍然是"tb"。因此,我们不应该直接设置"_tb.V"作为topLevelmoduleintestbench的名字,而应该根据实际情况输入"tb"。 完成设置后,连续点击两次"OK",回到Settings-<工程名>选项卡中,勾选"Use Script to setup simulation",并定位到文件"_testbench/testbench_verilog//_wave.do"。这个文件是一个脚本文件,它的主要功能是帮助我们将信号有条理地添加到仿真波形窗口中,使得观察更加直观。点击"Apply",然后"OK"即可。 至此,NativeLink的设置基本完成。在Quartus II软件中点击"RTL Simulation"按钮就可以启动仿真。仿真过程会比较漫长,因为Modelsim-Altera需要首先对设计文件进行编译,整个过程大约需要3分钟左右的时间。仿真开始后,模型将会自动在波形窗口中添加信号并停在仿真时间0处。由于仿真脚本中没有"run"命令,所以添加完波形后Modelsim将进入等待状态。这时,我们需要手动输入"run-all"命令或者在GUI上点击"run-all"按钮来运行仿真。仿真大约运行10秒后会停下来,此时,我们就可以开始观察波形,并在Transcript窗口中获取仿真过程中的一些数据信息。 通过上述步骤,我们可以完成对Altera三速以太网IP核的仿真测试,观察收发模块和FIFO模块的信号波形,对仿真结果进行初步的分析。在后续的工作中,还需要对仿真结果进行深入的分析,以便进一步优化设计,确保最终的FPGA设计达到预期的功能和性能要求。
2025-01-09 15:20:58 62KB 软件开发 QUARTUS II15.0
1
FPGA系统中实现网口有多种方式,包括友晶的DE2-35开发板上使用的NIOS II处理器通过外部MAC芯片DM9000实现的web server,以及DE2-115开发板上使用NIOS II处理器与三速以太网(TSE)IP核实现web server......
2025-01-09 13:48:46 64KB 软件设计 QUARTUS 15.0
1