内容概要:本文探讨了PMSM(永磁同步电机)的转速控制及其全状态参数观测,重点比较了PID控制器和滑模控制器(SMC)在Simulink环境下的表现。首先介绍了PMSM电机的基本特性和应用场景,随后详细描述了基于PID和SMC的转速控制模型的构建过程,包括MATLAB/Simulink代码片段。接着讨论了在两种控制方式下对电机状态参数(如转动惯量、负载力矩、定子电阻、永磁磁链、dq轴电感等)的识别方法,特别是通过观测器模型进行参数估计的技术细节。最后总结了两种控制策略的优势和局限性,并展望了未来的研究方向。 适合人群:电气工程专业学生、电机控制领域的研究人员和技术人员。 使用场景及目标:适用于需要深入了解PMSM电机控制机制的专业人士,旨在帮助他们掌握PID和SMC控制器的设计与应用,提高电机系统的性能和稳定性。 其他说明:文中涉及的Simulink模型和MATLAB代码为理解和实现提供了实际操作的基础,同时强调了状态参数识别在电机性能优化中的重要作用。
2025-10-16 12:44:14 400KB
1
内容概要:本文探讨了针对欠驱动四旋翼飞行器的容错控制策略,特别是基于超螺旋滑模控制(ST-SMC)和控制分配的方法。四旋翼无人机由于其复杂动态特性及高度耦合的多输入多输出(MIMO)系统,控制难度较大。文中介绍了传统滑模控制(SMC)存在的高频振颤问题及其改进——超螺旋滑模控制的应用,旨在消除不必要的高频颤振。同时,通过状态估计器检测故障并触发控制分配算法,确保在执行器效率损失情况下仍能保持飞行稳定。最终,利用Matlab实现了相关控制算法的仿真验证,并提供了详细的数学建模和控制器设计。 适合人群:从事无人机研究、自动化控制领域研究人员和技术人员,尤其是关注四旋翼飞行器容错控制的专业人士。 使用场景及目标:适用于需要提高四旋翼无人机在执行器故障情况下的安全性与可靠性的应用场景,如军事侦察、工业巡检等领域。目标是在执行器发生故障时,通过快速响应机制保证飞行器的安全降落,减少潜在的风险和损失。 其他说明:附有完整的Matlab代码实现、算法解析及相关文档,有助于读者深入了解该容错控制系统的具体实现细节。
2025-10-13 17:04:38 537KB
1
四旋翼无人机轨迹跟踪的自适应滑模控制及其Matlab仿真.pdf
2025-10-10 17:27:49 55KB
1
内容概要:本文详细介绍了预设性能控制(PPC)的理论基础及其在MATLAB环境下的具体实现。首先,文章解释了性能函数的设计,通过指数衰减函数划定误差的活动范围,并引入误差变换使原始误差压缩到指定区间。接着,文章探讨了障碍李雅普诺夫函数的应用,利用对数项作为屏障防止误差越界。随后,文章阐述了有限时间滑模控制的增强机制,通过设计滑模面和控制律,实现了系统的快速收敛。最后,文章提供了完整的仿真框架,展示了如何应用这些技术于二阶系统,特别是电机和机械臂等应用场景。 适用人群:自动化控制领域的研究人员和技术人员,尤其是那些熟悉MATLAB并希望深入了解预设性能控制的人士。 使用场景及目标:适用于需要精确控制误差边界的应用场合,如工业自动化、机器人控制等领域。主要目标是提高系统的响应速度和稳定性,同时确保误差始终保持在预设范围内。 其他说明:文中提供的MATLAB代码可以直接用于实验验证,但需要注意参数的选择和调整,以避免可能出现的问题,如控制量饱和或抖振。此外,实际应用中还需考虑外部扰动的影响,建议增加干扰观测器以提升系统的鲁棒性。
2025-10-10 14:42:23 293KB
1
基于自抗扰控制的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,自抗扰控制下的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,基于自抗扰控制的非奇异终端滑模控制_pmsm 包含:详细公式推导以及终端滑模控制设计方法以及稳定性推导、1.5延时补偿。 ,基于自抗扰控制的非奇异终端滑模控制_pmsm; 详细公式推导; 终端滑模控制设计方法; 稳定性推导; 1.5延时补偿。,自抗扰控制下的PMSM非奇异终端滑模控制设计方法研究 在现代电力电子和自动控制领域,永磁同步电机(PMSM)因其高效率、高功率密度以及良好的控制性能而被广泛应用。在实际应用中,电机控制的稳定性与快速响应能力是影响系统性能的关键因素。自抗扰控制(ADRC)和非奇异终端滑模控制(NTSMC)作为两种先进的控制策略,在提高系统鲁棒性、减少对系统模型精确性的依赖方面展现了巨大潜力。本文旨在探讨基于自抗扰控制的PMSM非奇异终端滑模控制策略的详细公式推导、稳定性分析,以及1.5延时补偿设计方法。 自抗扰控制技术是一种能够有效应对系统外部扰动和内部参数变化的控制方法。它通过实时估计和补偿系统内外扰动来实现对系统动态行为的有效控制。在电机控制系统中,ADRC可以显著增强系统对负载变化、参数波动等不确定因素的适应能力,从而提高控制精度和鲁棒性。 非奇异终端滑模控制是一种新型的滑模控制技术,其核心在于设计一种非奇异滑模面,避免传统滑模控制中可能出现的“奇异点”,同时结合终端吸引项,使得系统状态在有限时间内收敛至平衡点。NTSMC具有快速、准确以及无需切换控制输入的优点,非常适合用于高性能电机控制系统。 在研究中,首先需要详细推导基于自抗扰控制的PMSM非奇异终端滑模控制的相关公式。这包括建立PMSM的数学模型,设计自抗扰控制器以补偿系统内外扰动,以及构造非奇异终端滑模控制律。在推导过程中,需要充分考虑电机的电磁特性、转动惯量以及阻尼效应等因素。 接下来,稳定性分析是控制策略设计的关键环节。通过李雅普诺夫稳定性理论,可以对控制系统的稳定性进行深入分析。通过选择合适的李雅普诺夫函数,证明在给定的控制律作用下,系统的状态能够收敛至平衡点,从而确保电机控制系统的稳定性。 1.5延时补偿设计方法是提高系统控制性能的重要环节。在电机控制系统中,由于信息处理、执行器动作等方面的延迟,系统中必然存在一定的时延。为了保证控制性能,需要在控制策略中引入延时补偿机制。通过精确估计系统延迟,并将其纳入控制律中,可以有效减少时延对系统性能的影响。 本文档中包含了多个以“基于自抗扰控制的非奇异终端滑模控制”为主题的文件,文件名称后缀表明了文件可能是Word文档、HTML网页或其他格式。从文件列表中可以看出,内容涵盖了详细公式推导、滑模控制设计方法、稳定性分析以及延时补偿设计方法等多个方面。此外,文档中还包含“应用一”、“应用二”等内容,表明了该控制策略在不同应用场合下的具体运用和实验研究。 基于自抗扰控制的PMSM非奇异终端滑模控制策略通过结合ADRC和NTSMC的优势,能够有效提升电机控制系统的稳定性和响应速度,减少对系统精确模型的依赖,并通过延时补偿设计提高控制性能。这项研究为高性能电机控制系统的开发提供了新的思路和方法。
2025-09-19 14:14:25 659KB edge
1
无线电能传输(WPT)的LCL-S拓扑及其在MATLAB/Simulink环境下的仿真模型。LCL-S拓扑由两电平H桥逆变器、LCL-S串联谐振和不可控整流结构组成,适用于高频能量传输并具有良好阻抗匹配特性。文中重点探讨了三种控制方法——滑模控制、移相控制和PI控制,并对其仿真效果进行了对比分析。滑模控制通过实时调整逆变器输出电压确保系统最优工作点;移相控制则通过调整相位差优化能量传输;PI控制利用比例和积分环节保持系统稳定。最终,通过对比实验验证了各控制方法在不同工况下的性能差异。 适合人群:从事无线电能传输研究的技术人员、高校师生以及对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:①理解和掌握LCL-S拓扑的工作原理及其在无线电能传输中的优势;②评估滑模控制、移相控制和PI控制在LCL-S拓扑中的应用效果,为实际项目选型提供依据。 其他说明:附带的文章有助于加深对仿真实验的理解,建议结合理论与实操进行学习。
2025-08-25 17:39:46 492KB
1
非奇异滑模控制技术:TSMC、NTSMC、FTSMC与NFTSMC的加速特性与抖动抑制效果对比研究,非奇异滑模控制:TSMC、NTSMC、FTSMC与NFTSMC的加速趋近特性与抖动抑制效果比较研究,非奇异快速终端滑模控制 包含:TSMC、NTSMC、FTSMC、NFTSMC等滑模控制方法,对比了趋近率的加速特性,渐近性质和抖动抑制效果 ,非奇异快速终端滑模控制(非奇异滑模、快速终端滑模); TSMC、NTSMC、FTSMC、NFTSMC; 趋近率加速特性; 渐近性质; 抖动抑制效果,非奇异快速与渐近滑模控制方法对比研究
2025-07-07 10:44:33 1.9MB css3
1
基于观测器的LOS制导结合反步法控制:无人船艇路径跟踪控制的Fossen模型在Matlab Simulink环境下的效果探索,无人船 无人艇路径跟踪控制 fossen模型matlab simulink效果 基于观测器的LOS制导结合反步法控制 ELOS+backstepping ,核心关键词:无人船; 无人艇; 路径跟踪控制; Fossen模型; Matlab Simulink效果; 基于观测器的LOS制导; 反步法控制; ELOS+backstepping。,基于Fossen模型的无人船路径跟踪控制:ELOS与反步法联合控制的Matlab Simulink效果分析
2025-07-02 19:13:33 89KB xhtml
1
内容概要:本文详细介绍了如何利用Fossen模型、ELOS观测器以及反步法控制器,在Matlab Simulink环境中实现无人船的路径跟踪控制。首先解释了Fossen模型将船舶运动分解为运动学和动力学两个方面,接着阐述了ELOS观测器用于实时估计环境干扰如水流漂角的作用,最后讲解了反步法控制器的设计及其递归控制机制。文中还展示了传统LOS与ELOS+反步法组合的实际性能对比,证明后者在抗干扰能力和路径跟踪精度上有显著优势。 适合人群:从事无人船研究的技术人员、自动化控制领域的研究人员、对船舶运动建模感兴趣的学者。 使用场景及目标:适用于需要提高无人船路径跟踪精度和鲁棒性的应用场景,旨在帮助开发者理解和应用先进的控制算法和技术手段,优化无人船的自主航行能力。 其他说明:文中提供了大量MATLAB/Simulink代码片段,便于读者理解和复现相关算法。同时强调了实际调试过程中需要注意的关键点,如参数选择、执行器饱和限制等。
2025-07-02 19:12:56 262KB
1
无感FOC驱动滑膜观测器算法应用及全开源代码详解——采用SVPWM与滑模控制方案,基于STM32F103实现,无感FOC驱动滑膜观测器算法原理及应用,采用全开源c代码及SVPWM弦波方案,基于STM32F103处理器,无感FOC 滑膜观测器 滑模 弦波方案 svpwm 算法采用滑膜观测器,全开源c代码,全开源,启动顺滑,提供原理图、全套源码。 使用stm32f103。 ,无感FOC; 滑膜观测器; 滑模; 弦波方案; svpwm; 代码全开源; STM32F103; 启动顺滑。,基于滑膜观测器的无感FOC算法:STM32F103全开源C代码实现
2025-06-25 14:47:58 920KB xbox
1