遗传算法在多维无约束函数优化问题中的应用.pdf
2022-07-12 09:12:08 1.11MB 文档资料
基于Matlab遗传算法工具箱的函数优化问题求解.pdf
2022-07-10 18:00:53 99KB 计算机
基于最优化方法的函数优化问题,分别对于约束极值问题和无约束极值问题各有两种算法,包括相关资料、工程文件及总结论文,仅供参考(西电02105143)
2022-06-25 10:52:55 2.24MB 最优化方法 函数优化
1

分析了粒子群优化算法的收敛性,指出它在满足收敛性的前提下种群多样性趋于减小, 粒子将会因速度降低而失去继续搜索可行解的能力;提出混沌粒子群优化算法, 该算法在满足收敛性的条件下利用混沌特性提高种群的多样性和粒子搜索的遍历性, 将混沌状态引入到优化变量使粒子获得持续搜索的能力.实验结果表明混沌粒子群优化算法是有效的,与粒子群优化算法、遗传算法、模拟退火相比,特别是针对高维、多模态函数优化问题取得了明显改善.

1
该代码采用python编写模拟退火算法,整个过程中可以根据更改代码求解最大值与最小值。 1. 模拟退火算法的原理: 输入:温度T、退火控制参数k、初始点x0 输出:最优的自变量值、最大/最小值 (1)给定初始值温度T,退火控制参数k,初始点x0(该点为随机选择点),并计算f(x0) (2)随机产生扰动r=(2*rand-1)*delt;新店x1=x0+r,同时计算f(x1)、f(x1)-f(x0) (3) Metropolis准则,若f(x1)-f(x0)>0,接受该点(更新x0),且接受概率为p=exp(-(f(x1)-f0)/T),若p>r(r为0-1上的随机数),接受该点(更新x0),否则放弃该点 (4)执行降温操作:T=T*k;返回(2)继续 (5)执行上述步骤,结束
2022-05-28 10:05:03 3KB python 模拟退火算法 算法 函数优化
用蚁群算法进行函数优化时,存在收敛速度慢且易于陷入局部最优解的问题。针对这一现状,提出了一种微粒群和蚂蚁算法相结合的混合连续优化算法,该算法引入微粒群优化操作进行全局搜索牵引,采用网格法进行细密度的蚂蚁局部搜索,从而能很好地应用于求解连续对象优化问题。对若干典型复杂连续函数的实验测试结果表明,该混合算法跳出局部最优解的能力较强,能较快地收敛到全局最优解,并能适于高维空间的优化问题。与最新的有关研究成果相比,该算法不仅寻优精度高,而且收敛速度大幅提高,效果十分令人满意。
1
利用(μ,λ)演化策略求解Ackley函数极小化问题。主要包括种群初始化、重组、变异、(μ,λ)存活选择四个步骤来进行求解。
1
人工蜂群算法是近年来新提出的一种优化算法。针对标准人工蜂群算法的局部搜索能力差,精度低的缺点,提出了一个改进的人工蜂群算法,利用全局最优解和个体极值的信息来改进人工蜂群算法中的搜索模式,并引入异步变化学习因子,保持全局搜索和局部搜索的平衡。将改进的人工蜂群算法在函数优化问题上进行测试,结果表明改进的人工蜂群算法优于原算法。
2021-11-19 08:22:46 531KB 论文研究
1
文档中主要是基于粒子群优化算法的Rosenbrock函数优化问题的研究,本文分析了粒子群优化算法的原理及算法流程,对算法参数的选择做了详细的研究,并基于Java语言开发了粒子群算法的模拟程序,实现求解Rosenbrock函数最优解。
2021-10-03 13:37:18 248KB AI 粒子群优化算法 Rosenbrock函数
1
模拟退火算法实现函数优化问题,程序使用c++算法
2021-09-24 15:08:52 11KB 模拟退火算法
1