随着大数据时代的到来,数据治理和元数据管理成为了企业关注的焦点。数据血缘分析是指对数据来源、加工过程及其与其他数据关系的追踪和管理。一个清晰的数据血缘关系对于保障数据质量、进行数据资产管理以及支持决策分析都至关重要。在这一背景下,开源工具的引入为企业提供了一种经济且灵活的数据血缘分析解决方案。 本开源工具的核心在于利用Druid-SQL解析器,实现对数据血缘关系的自动化提取。Druid-SQL解析器作为一种解析技术,能够将SQL语句转化为可分析的数据结构,从中提取出数据的来源和去向,从而构建数据血缘的层次结构。这样的技术在数据血缘分析中至关重要,因为它能够帮助我们理解数据在不同系统、数据库或数据仓库中是如何流动和变化的。 在多层级数据血缘关系的提取上,本工具支持对字段、表格、Schema以及整个集群平台的数据进行全链路追踪。这意味着从数据的初始输入到最终输出,每一个中间环节的数据变化都能够被追踪到。这种全面的追踪能力对于数据治理尤为重要,它能够帮助数据管理者发现数据质量问题的根源,及时修复数据错误,保证数据的准确性和一致性。 此外,本工具还提供了可视化分析功能,这对于理解复杂的血缘关系尤为关键。通过直观的图表和视图,用户可以更直观地理解数据之间的关联和影响,从而在进行数据质量核查时做出更明智的决策。可视化不仅仅是让数据血缘关系“看起来更清楚”,它还能够揭示出数据之间的潜在联系,这对于大数据资产的管理和利用至关重要。 支持字段表Schema集群平台全链路血缘追溯与影响分析的特性,使得本工具成为了大数据治理中的重要组成部分。它不仅能够帮助企业更好地管理和控制数据资产,还能够在数据资产的利用过程中提供价值。通过本工具,企业能够确保数据的合规性、隐私保护,并在不断变化的法规和政策环境中保持敏捷性。 在元数据管理方面,本开源工具为数据的定义、分类、存储和安全提供了全面的管理功能。元数据是关于数据的数据,良好的元数据管理能够极大地提升数据的可访问性、可解释性和可用性。这不仅有助于提高数据治理的效果,还能够提升数据团队的工作效率。 数据质量核查是数据管理的重要环节,它确保了企业所依赖的数据是准确和可靠的。通过本工具,数据管理者能够识别数据中的异常值、不一致性或缺失值,并采取相应的措施。这种核查过程对于避免因数据错误导致的商业决策失误至关重要。 本工具的开源性质意味着它能够被免费使用,并且允许用户根据自己的需要进行定制和扩展。开源社区的支持也能够加速工具的改进和新功能的开发,这对于保持工具的领先地位和适应不断变化的技术环境都是至关重要的。 本开源工具在大数据治理、元数据管理、数据质量核查以及数据资产的管理中都扮演了关键角色。它不仅提供了一种强大而灵活的方式来追踪和分析数据血缘关系,还为数据管理的各个方面提供了综合性的解决方案。通过这样的工具,企业能够更有效地利用其数据资产,从而在竞争激烈的市场中保持竞争优势。
2025-11-16 11:46:58 4.95MB
1
修剪后的依赖树上的图卷积用于关系提取 此回购包含PyTorch代码,用于修剪。 本文/代码在修剪的依赖树上引入了图卷积神经网络(GCN),用于关系提取的任务。 还引入了一种特殊的树修剪技术,称为“以路径为中心的修剪”,以从树中消除不相关的信息,同时最大程度地维护相关信息。 与诸如各种基于LSTM的模型之类的序列模型相比,此GCN模型利用依赖结构桥接远程单词,因此提高了远程关系的性能。 与以前的递归模型(如TreeLSTM)相比,此GCN模型在获得更好的性能的同时,也更早地实现了并行化,因此效率更高。 参见下面的模型架构概述: 要求 Python 3(在3.6.5上测试) PyTorch(
1
通过使用命名实体识别提高无监督的关系提取 我们 也比较性能 KnowItAll最先进的系统性能,并以命名实体识别表现其模式学习 组件,它使用一个简单的和 强大的模式语言
站点 小号ELF-细心BiLSTM-ÇRF瓦特第I和T ransferredËmbeddings为因果关系提取。 arXiv论文链接: : 免费访问链接: : (论文中的表6似乎没有被正确编辑...) 强调 提出了一种新颖的因果关系标记方案以服务于因果关系提取 嵌入的嵌入大大减轻了数据不足的问题 自我注意机制可以捕获因果关系之间的长期依赖关系 实验结果表明,该方法优于其他基准 抽象的 从自然语言文本中提取因果关系是人工智能中一个具有挑战性的开放性问题。 现有方法利用模式,约束和机器学习技术来提取因果关系,这在很大程度上取决于领域知识,并且需要相当多的人力和时间来进行特征工程。 在本文中,我们基于新的因果关系标记方案,将因果关系提取公式指定为序列标记问题。 在此基础上,我们提出了一种以BiLSTM-CRF模型为骨干的神经因果提取器,称为SCITE(自注意力BiLSTM-CRF传递嵌
1
目的蛋白相互作用 目的蛋白蛋白质关系提取 下载AIMed数据集 从ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/interactions.tar.gz下载 使用说明将原始数据集转换为XML convert_aimed.py -i aimed_interactions_input_dir -o aimed.xml 跑 步骤1:将xml AIMed转换为扁平化的json python src/preprocessors/aimed_json_converter.py --inputfile tests/sample_data/aimed.xml --outputfile aimed.json
2022-05-16 22:11:04 25KB Python
1
疾病知识图谱是一种连接、组织和访问有关疾病的不同信息的方式,对人工智能(AI)有许多好处。为了创建知识图谱,需要以疾病概念之间关系的形式从多模态数据集中提取知识,并对概念和关系类型进行规范化。我们介绍一种用于疾病关系提取和分类的多模式方法REMAP。REMAP机器学习方法将局部、不完全知识图谱和医学语言数据集嵌入到紧凑的潜向量空间中,然后对齐多模态嵌入以提取最佳疾病关系。应用REMAP方法构建了一个疾病知识图谱,关联关系为96,913个,文本数据集为124万句。在人类专家标注的数据集上,REMAP通过融合疾病知识图和文本信息,将基于文本的疾病关系提取提高了10.0%(准确率)和17.2% (F1-score)。此外,REMAP利用文本信息推荐知识图谱中的新关系,比基于图的方法高出8.4%(准确性)和10.4% (F1-score)。系统化的知识正在成为人工智能的支柱,创造了将语义注入人工智能并将其充分整合到机器学习算法中的机会。虽然先前的语义知识可以帮助从文本中提取疾病关系,现有的方法不能充分利用多模态数据集。REMAP是一种融合结构化知识和文本信息的多模式疾病关系提取和分类方法。RE
2022-04-16 09:07:35 1.07MB 多模态学习 图论
1
金融领域中基于Boostrapping的关系提取
2022-04-08 08:30:48 1.25MB 研究论文
1
REDN 这是预训练语言模型的关系提取下游网络的原型代码,支持我们 此代码的一部分根据进行了修订。 数据集 您可以从和获取数据集 入门指南 在example / configs.py中设置自己的路径,包括预训练的模型路径,数据的根路径和输出名称。使用args数据集和mode运行example / redn_trainer.py。数据集可以是nyt10,semeval或webnlg。模式可以是t进行训练,e进行评估。例如,要训练SemEval,请尝试 python redn_trainer semeval t 另一个分行 我们基于建立了一个。在实际项目中使用时,它将更加友好和强大,尽管开发人员应该花一些时间来编写数据集读取器。 日志 如果您无法运行这些代码,则还可以检查./logs中的所有日志。
2022-03-22 15:23:23 47KB Python
1
知识是理解世界的一种正式方式,为下一代人工智能(AI)提供人类水平的认知和智能。知识的表现形式之一是实体之间的结构关系。关系抽取(RE)是信息抽取的一个子任务,是自动获取这些重要知识的有效方法,在自然语言处理(NLP)中起着至关重要的作用。
2021-12-30 20:00:39 631KB 关系抽取
1
实体关系提取 基于TensorFlow的实体和关系提取。基于TensorFlow的实体和关系撤消,2019语言与智能技术竞赛信息撤除(实体与关系撤回)任务解决方案。 如果您对信息抽取论文研究感兴趣,可以查看我的博客。 抽象 该代码以管道式的方式处理实体及关系抽取任务,首先使用一个多标签分类模型判断句子的关系种类,然后将句子和可能的关系类型输入序列标注模型中,序列标注模型标注出句子中的实体,最终结合预测的关系和实体输出实体-关系列表:(实体1,关系,实体2)。 该代码以管道方式处理实体和关系提取任务。 首先,使用多标签分类模型来判断句子的关系类型。 然后,将句子和可能的关系类型输入到序列标签模
1