图12.28 HS和HSS模型计算与实测位移 126
2025-06-23 16:31:51 4.83MB 材料模型 ABAQUS
1
裂纹深度和裂纹开口位移的关系,周恒,乐京霞,在工程应用中,疲劳裂纹的出现有时不可避免,研究裂纹深度d和名义裂纹开口位移(Normalized Crack Opening Displacement)NCOD之间的关系显得十
2025-06-06 16:38:49 334KB 首发论文
1
COMSOL 6.2:基于有限元分析的1-3压电复合材料厚度共振模态与阻抗相位曲线仿真研究,COMSOL 6.2有限元仿真模型:1-3压电复合材料厚度共振模态与阻抗相位曲线深度解析,表面位移仿真及材料几何参数任意调整支持,COMSOL有限元仿真模型_1-3压电复合材料的厚度共振模态、阻抗相位曲线、表面位移仿真。 材料的几何参数可任意改变 版本为COMSOL6.2,低于此版本会打不开文件 ps:支持超声、光声、压电等相关内容仿真代做 ,COMSOL有限元仿真模型;压电复合材料;厚度共振模态;阻抗相位曲线;表面位移仿真;几何参数可变;COMSOL6.2版本;超声、光声、压电仿真代做。,COMSOL 6.2 压电复合材料厚度共振仿真分析
2025-05-18 12:41:54 891KB safari
1
内容概要:本文详细介绍了使用COMSOL进行多种复杂物理场数值仿真的经验和技巧,涵盖变压器磁通密度、力磁耦合位移、微波加热电场分布、瓦斯抽采孔隙率与甲烷含量以及IGBT温度及应力等多个领域的具体案例。作者通过实例展示了如何处理材料非线性、多物理场耦合、网格优化等问题,并提供了具体的代码片段和注意事项。 适合人群:从事数值模拟、多物理场耦合仿真及相关领域的科研人员和技术工程师。 使用场景及目标:帮助读者掌握COMSOL在不同应用场景下的建模方法和技巧,解决常见问题并提升仿真准确性。适用于希望深入了解COMSOL多物理场耦合仿真的专业人士。 其他说明:文中不仅提供了详细的代码示例,还分享了许多实用的经验教训,如材料属性设置、边界条件选择、网格划分等,有助于读者快速上手并避免常见的陷阱。
2025-05-10 17:43:47 1.42MB
1
COMSOL 6.2 有限元仿真模型:1-3压电复合材料厚度共振模态、阻抗相位与表面位移动态分析的几何参数可调版,"COMSOL 6.2有限元仿真模型:1-3压电复合材料厚度共振模态、阻抗相位曲线及表面位移仿真的深度探索",COMSOL有限元仿真模型_1-3压电复合材料的厚度共振模态、阻抗相位曲线、表面位移仿真。 材料的几何参数可任意改变 版本为COMSOL6.2,低于此版本会打不开文件 ,COMSOL有限元仿真模型;压电复合材料;厚度共振模态;阻抗相位曲线;表面位移仿真;几何参数可变;COMSOL6.2。,COMSOL 6.2压电复合材料厚度模态与阻抗仿真的研究报告
2025-04-25 20:52:02 168KB css3
1
内容概要:本文详细介绍了如何利用COMSOL进行光子晶体超表面的透反射相位计算以及GH(古斯-汉欣)位移的模拟。首先解释了GH位移的概念及其重要性,接着逐步讲解了从建模到最终数据分析的全过程。其中包括选择合适的边界条件、正确设置网格密度、处理相位跳变等问题的具体方法。同时提供了MATLAB和Python代码用于处理相位数据并计算GH位移。文中还分享了许多实践经验,如避免常见错误、提高仿真的准确性等。 适合人群:从事光学、光子学研究的专业人士,尤其是对光子晶体超表面感兴趣的科研工作者和技术开发者。 使用场景及目标:帮助研究人员更好地理解和掌握光子晶体超表面的设计与仿真技巧,特别是在GH位移方面的应用。通过学习本文提供的方法,能够更加精确地预测和控制光束的偏折行为,从而为新型光学器件的研发提供理论依据和技术支持。 其他说明:文中不仅包含了详细的理论分析,还附带了大量的实用技巧和注意事项,有助于读者在实际工作中少走弯路,提高工作效率。此外,作者还强调了不同工具之间的协同使用,如将COMSOL与MATLAB、Python相结合,进一步提升了仿真的灵活性和便捷性。
2025-04-17 15:18:42 649KB COMSOL 光学仿真
1
"基于COMSOL模型的试件裂纹超声检测技术研究:汉宁窗调制正弦信号的激励与位移代替超声激励的模型介绍",COMSOL—试件裂纹超声检测 模型介绍:试件中有一裂纹,通过发生超声波来检测裂纹。 激励信号为汉宁窗调制的正弦信号,中心频率为200Hz,用固体力学场的指定位移来代替超声激励。 ,COMSOL; 试件裂纹; 超声检测; 汉宁窗调制; 正弦信号; 中心频率; 固体力学场; 指定位移。,COMSOL:超声波检测试件裂纹模型介绍 随着现代科学技术的发展,超声检测技术在工业生产和科学研究中得到了广泛的应用。超声检测技术的核心在于通过发射和接收超声波,以非侵入式的方式检测材料内部结构的完整性。本文主要介绍了一种基于COMSOL模型的试件裂纹超声检测技术,通过汉宁窗调制的正弦信号激励,以及使用固体力学场中的指定位移来模拟超声激励,从而达到检测试件中裂纹的目的。 在超声检测技术中,激励信号的选择至关重要,因为它直接影响到检测的灵敏度和准确性。本次研究选用的激励信号是汉宁窗调制的正弦信号,其具有较好的能量集中特性和较低的旁瓣水平,这有助于提高检测信号的质量和分辨率。中心频率为200Hz的正弦信号能够深入探测试件内部,探测到微小的裂纹缺陷。 固体力学场在超声波传播过程中扮演了重要角色。通过指定位移来代替传统的超声激励,可以更加精确地控制和模拟超声波在试件内部的传播行为。这种模拟方法不仅能够更真实地反映出超声波在材料中的传播特性,还能进一步优化检测过程,提高裂纹检测的效率和准确性。 在试件裂纹超声检测模型中,裂纹的存在会改变超声波的传播路径、能量分布和反射特性。通过精确模拟和分析这些变化,可以有效地识别和定位裂纹的位置和大小。因此,本文的研究不仅展示了COMSOL模型在裂纹检测中的应用,也为超声检测技术的发展提供了新的思路和方法。 此外,本文还探讨了超声检测技术在数字化时代的发展趋势。随着计算机技术的不断进步,数字模拟技术在超声检测中的作用日益凸显。通过数字模拟技术,研究人员可以在不破坏试件的前提下,深入分析超声波在复杂结构中的传播规律,从而为实际检测提供理论指导和技术支持。 本文的研究不仅为超声检测技术提供了新的理论模型和技术手段,也为材料缺陷检测、质量控制和无损检测等领域的发展提供了有益的参考。
2025-04-16 21:12:28 1MB edge
1
COMSOL三维模型中的声表面波(SAW)行波驻波传感器:铌酸锂128度Y切X传播特性及电场、位移、深度方向影响研究,基于COMSOL的声表面波SAW传感器:行波驻波三维模型研究及电场、位移、深度方向的影响因素分析,COMSOL声表面波SAW行波驻波传感器铌酸锂128度Y切X传播三维模型 电场、位移、深度方向、叉指对数、插入损耗、带宽、声孔径、衍射 ,COMSOL;声表面波SAW;行波驻波传感器;铌酸锂128度Y切X传播;三维模型;电场;位移;深度方向;叉指对数;插入损耗;带宽;声孔径;衍射,COMSOL模拟:128度Y切X传播的铌酸锂SAW行波驻波传感器三维模型研究
2025-04-12 19:49:26 9.29MB
1
电感式直线位移传感器pdf,电感式直线位移传感器
2025-03-10 17:19:27 6.78MB
1
激光位移传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。
1