QT框架是Qt公司开发的一种跨平台应用程序开发框架,它提供了丰富的API和工具,使得开发者能够构建功能强大的桌面、移动和嵌入式应用。在QT框架下实现基于TCP协议的多线程文件传输系统,可以充分利用多核处理器的性能,提高文件传输效率。以下是关于这个主题的详细知识点: 1. **QT框架基础**: - QT框架是用C++编写的,支持Windows、Linux、macOS、Android、iOS等多个操作系统。 - Qt库包含了图形用户界面(GUI)组件、网络编程、数据库访问、多媒体处理、XML解析等功能。 - 主要组件包括:QWidget(基本UI元素),QApplication(应用管理),QMainWindow(主窗口),QThread(线程管理)等。 2. **TCP协议**: - TCP(Transmission Control Protocol)是一种面向连接的、可靠的传输协议,它通过三次握手建立连接,保证数据的有序无损传输。 - TCP提供全双工通信,数据传输过程中有确认机制、流量控制和拥塞控制。 - 在QT框架中,可以使用QTcpServer和QTcpSocket类来实现TCP通信。 3. **QT中的网络编程**: - `QTcpServer`用于监听客户端连接请求,一旦有新的连接,会调用指定的槽函数处理。 - `QTcpSocket`代表一个TCP连接,负责数据的发送和接收。可以使用write()函数发送数据,read()或readLine()函数接收数据。 4. **多线程编程**: - 在QT中,`QThread`类允许创建并管理单独的执行线程。每个线程有自己的事件循环,可以独立处理任务。 - 使用多线程处理文件传输,可以避免单线程在大文件传输时阻塞UI,提高用户体验。 - 通常,服务器端在一个线程中处理多个客户端连接,而每个客户端连接可以在单独的线程中处理。 5. **文件传输实现**: - 文件传输通常涉及读取本地文件(如使用QFile类)和将文件内容写入网络流(QTcpSocket的write())。 - 为了确保数据完整,可以使用固定大小的缓冲区进行分块传输,并在每块数据后附加校验和。 - 客户端收到数据后,也需要使用相同的方法验证数据完整性,并写入本地文件。 6. **错误处理与连接管理**: - 在文件传输过程中,需要处理可能发生的网络中断、超时等问题。可以设置信号和槽来捕获这些异常并采取相应措施。 - 关闭连接时,确保所有的数据已发送并确认,然后调用QTcpSocket的disconnectFromHost()或close()方法。 7. **欢迎文档(welcome.txt)**: 这个文档可能包含项目简介、使用说明、版权信息等内容,为用户提供初步的指引。 8. **源代码(socket_qt.zip)**: 这个压缩包可能包含实现上述功能的QT项目源代码,包括服务器端和客户端的代码。用户可以通过研究这些代码来学习如何在QT中实现TCP文件传输。 QT框架下的TCP多线程文件传输系统结合了QT的强大功能和TCP的可靠性,提供了一种高效、稳定的数据交换方式。通过学习和实践这样的系统,开发者可以提升在网络编程和多线程应用开发方面的技能。
2024-11-03 23:57:25 41.67MB 网络协议 学习资料
1
### 耦合模理论推导 #### 一、耦合模理论概述 耦合模理论(Coupled-Mode Theory, CMT)是一种用于研究两个或多个电磁波模式间耦合特性的理论方法。该理论在无线能量传输、微波射频等领域的应用尤为广泛。CMT能够有效地简化多线圈耦合电路的计算复杂度,特别是在非接触电能传输(Contactless Power Transfer, CPT)系统的设计与分析中扮演着重要的角色。 #### 二、耦合模理论在能量传输中的应用 ##### 2.1 单个负载的电路分析 **电路分析** 考虑一个基本的磁共振系统,其中包含逆变器和整流器部分。在该系统中,逆变器产生的交流电源\( U \)经过耦合线圈传递给负载\( R_L \)。这里,耦合系数\( K = \frac{M}{\sqrt{L_1 L_2}} \),其中\( M \)代表两个线圈\( L_1 \)和\( L_2 \)之间的互感。根据电路原理,可以得到以下方程: 1. 原边线圈电流方程:\[ U = (R_1 + j\omega L_1)I_1 + j\omega MI_2 \] 2. 副边线圈电流方程:\[ 0 = (R_2 + j\omega L_2)I_2 - j\omega MI_1 \] 3. 负载功率方程:\[ P_L = I_2^2R_L \] 在谐振状态下,即\( \omega = \frac{1}{\sqrt{L_1C_1}} = \frac{1}{\sqrt{L_2C_2}} \),可以进一步简化上述方程组,并得到能量传输效率的计算公式。 **CMT分析** CMT分析侧重于稳态特性,假设主线圈和次线圈的幅值在正弦激励下为常数。利用CMT,我们可以得到原线圈和次线圈的能量变化方程: 1. 原线圈能量变化方程:\[ \dot{a}_1 = -\frac{1}{2}R_1a_1 - j\omega M a_2 + S \] 2. 次线圈能量变化方程:\[ \dot{a}_2 = -\frac{1}{2}R_2a_2 - j\omega M a_1 \] 其中,\( a_1(t) \)和\( a_2(t) \)分别代表原线圈和次线圈的瞬时能量,\( R_1 \)和\( R_2 \)为线圈的损耗,\( K_{12} \)为两个线圈之间的耦合率,\( S \)为外部激励(通常可以忽略不计)。通过这些方程,我们可以推导出原线圈和副线圈之间的能量传输效率,并验证它与电路分析方法得到的结果一致。 ##### 2.2 两个负载电路的传输效率分析 当存在两个负载时,电路模型变得更为复杂。此时,需要同时考虑两个负载线圈\( L_2 \)和\( L_3 \)与主线圈\( L_1 \)之间的互感\( M_2 \)和\( M_3 \)。同样地,可以列出相应的电流方程,并求解谐振条件下的传输效率。 1. 原边线圈电流方程:\[ U = (R_1 + j\omega L_1)I_1 + j\omega M_2 I_2 + j\omega M_3 I_3 \] 2. 第二个负载线圈电流方程:\[ 0 = (R_2 + j\omega L_2)I_2 - j\omega M_2 I_1 \] 3. 第三个负载线圈电流方程:\[ 0 = (R_3 + j\omega L_3)I_3 - j\omega M_3 I_1 \] 4. 负载功率方程:\[ P_{L2} = I_2^2 R_{L2},\quad P_{L3} = I_3^2 R_{L3} \] 通过这些方程,可以进一步推导出多负载情况下的能量传输效率公式,并将其与单负载情况下的公式进行比较,从而验证耦合模理论的有效性和一致性。 #### 三、结论 耦合模理论作为一种有效的工具,不仅能够简化复杂电路模型的分析过程,还能准确地预测能量传输系统的性能。通过上述分析可以看出,无论是单个负载还是多个负载的情况,耦合模理论都能够提供一种统一的方法来求解能量传输效率。这对于设计高效可靠的无线能量传输系统具有重要意义。在未来的研究中,耦合模理论有望在更多领域得到更广泛的应用和发展。
2024-10-20 23:05:52 430KB 能量传输
1
### 文件传输系统的加密解密 #### 一、背景与意义 随着信息技术的飞速发展,文件传输已成为网络应用中的重要组成部分。特别是在企业级应用中,文件传输的安全性尤为重要。然而,由于互联网本身的开放性和匿名性特点,数据在传输过程中面临着诸多威胁,包括但不限于数据泄露、篡改以及中间人攻击等。因此,建立一套安全可靠的文件加密传输系统显得尤为必要。 #### 二、关键技术 本系统主要采用了Java语言,并结合了TCP/IP协议、UDP协议、多线程技术、I/O流处理、Swing图形用户界面等技术进行开发。此外,还运用了MD5、RSA、DES等加密算法来确保文件的安全传输。 1. **Java语言**:作为一种跨平台的编程语言,Java拥有良好的可移植性、多线程处理能力和高度的安全性。这些特性使得Java成为开发此类系统的一个理想选择。 2. **TCP/IP与UDP协议**:TCP(传输控制协议)提供了一种可靠的、面向连接的数据传输服务,适用于文件传输等需要高可靠性的场景;UDP(用户数据报协议)则适用于即时通信等对实时性要求较高的场景。 3. **多线程技术**:在文件传输过程中,多线程技术可以显著提高系统的响应速度和处理效率。例如,在发送文件的同时,还可以接收即时消息。 4. **I/O流处理**:用于读写文件数据,支持对文件进行加密前后的读写操作。 5. **Swing图形用户界面**:提供了丰富的组件库,可以快速搭建出美观且易于使用的用户界面。 6. **MD5算法**:用于生成文件的数字摘要,可以用来验证文件的完整性。 7. **RSA与DES加密算法**:RSA是一种非对称加密算法,可用于密钥交换过程中的安全性保护;DES是对称加密算法,适合用于大量数据的加密处理。 #### 三、系统功能模块设计 根据系统需求,本系统设计了以下几个核心模块: 1. **界面模块**:提供用户友好的操作界面,整合其他模块的功能。 2. **文件发送和接收模块**:实现文件的发送和接收功能,同时支持断点续传。 3. **即时通信模块**:支持用户之间的即时聊天,增强交互体验。 4. **加解密模块**:对文件进行加密和解密,确保数据安全传输。 5. **联系人管理模块**:方便用户管理常用的联系人信息。 6. **日志管理模块**:记录系统操作日志,便于后续追踪问题。 #### 四、工作流程 1. **系统初始化**:启动系统后,先初始化各个模块并设置全局变量。 2. **用户操作**:用户可以通过界面选择文件接收者和待发送文件,点击发送按钮后,系统将自动进行文件加密和传输。 3. **加密过程**:在发送端,系统会使用MD5算法生成文件摘要,再利用RSA算法进行数字签名,最后使用DES算法加密文件。 4. **传输过程**:加密后的文件通过TCP/IP协议进行传输。 5. **解密过程**:接收端收到文件后,先使用DES算法解密,再验证RSA数字签名,最后确认文件完整无误。 #### 五、总结 通过综合运用多种技术,本文介绍的文件加密传输系统不仅能够满足基本的文件传输需求,还能够确保数据的安全性,同时提供了即时通信功能,极大地提升了用户体验。这种系统的设计与实现对于保障网络信息安全具有重要意义。
2024-10-14 18:13:31 243KB 文件传输
1
STM32F407是意法半导体(STMicroelectronics)推出的一款基于ARM Cortex-M4内核的微控制器,广泛应用于嵌入式系统设计。在本项目中,我们关注的是其高级数字转换器(ADC)功能,特别是多通道数据采集与DMA(直接内存访问)传输的结合,以及如何通过ADC测量获取的信号来估算CPU温度的均值。 ADC在STM32F407中的作用是将模拟信号转化为数字信号,这对于实时监测物理参数如电压、电流或温度至关重要。STM32F407内置多个ADC通道,可以同时对多个输入源进行采样,提高数据采集的效率和精度。ADC配置包括选择通道、设置采样时间、分辨率和转换速率等参数。 多通道ADC采集意味着我们可以同时从不同的传感器读取数据,例如,一个系统可能包含多个温度传感器分布在不同位置以监测CPU和周边环境的温度。每个通道的配置都需要独立设置,并且可以按照预定义的顺序或者并行方式进行转换。 接下来,DMA在STM32F407中的应用是为了减少CPU负担,实现数据的自动传输。在ADC采集过程中,一旦转换完成,数据可以直接通过DMA控制器传输到内存,而无需CPU干预。这种方式提高了系统的实时性能,因为CPU可以专注于其他更重要的任务,而数据处理则在后台进行。 要计算CPU温度的均值,我们需要对来自多个温度传感器的数据进行平均。在STM32F407中,这可以通过在内存中累积所有ADC转换结果,然后除以传感器的数量来实现。为了确保计算的准确性,可能还需要考虑ADC转换误差和温度传感器本身的漂移。此外,如果ADC的结果是12位或16位,可能需要进行适当的位右移以获得浮点或整数均值。 为了实现这一功能,编程时应创建一个循环,该循环会触发ADC转换,等待转换完成,然后通过DMA将数据传送到内存缓冲区。在缓冲区填满后,可以进行平均计算,并更新CPU温度的均值。这个过程可能需要在中断服务程序中执行,以便在每次新的ADC转换完成后处理数据。 在实际项目中,还可能需要考虑以下几点: 1. **数据同步**:确保所有传感器在同一时刻或几乎同一时刻采样,以减少因采样时间差异导致的温度偏差。 2. **滤波**:应用低通滤波器或其他滤波算法以去除噪声,提高温度测量的稳定性。 3. **误差校正**:可能需要根据实际应用场景对ADC读数进行温度传感器的校准,以得到更准确的温度读数。 4. **电源管理**:考虑到功耗,合理安排ADC和DMA的唤醒与休眠模式,特别是在低功耗应用中。 通过以上分析,我们可以看到,STM32F407ADC多通道采集配合DMA传输是一种高效且实用的方法,用于嵌入式系统中获取和处理多个传感器的数据,尤其是当需要实时监控CPU温度时。在具体实施过程中,需要综合考虑硬件配置、软件编程以及误差处理等多个方面,以确保系统的可靠性和性能。
2024-09-21 22:49:08 3.51MB stm32 均值算法 文档资料 arm
1
《WinCE与PC间文件网络传输工具TransFile详解》 在现代嵌入式系统开发中,尤其是在基于Windows CE (WinCE) 操作系统的设备中,与个人计算机(PC)进行文件交互是常见的需求。"WinCE与PC间的文件网络传输工具_TransFile.zip" 提供了一种解决方案,它是一个自实现的程序,旨在简化PC与WinCE系统之间的文件传输过程。这个工具不仅适用于x86架构的WinCE系统,还兼容armv4i架构,极大地拓宽了其应用范围。 我们来了解WinCE系统。Windows CE 是微软公司推出的一种嵌入式操作系统,广泛应用于各种智能设备,如手持设备、工业控制设备等。它提供了与桌面版Windows类似的API接口,方便开发者进行程序移植和开发。 文件网络传输工具TransFile的核心功能是通过网络实现跨平台的数据交换。在PC端和WinCE设备端分别运行相应的程序,它们通过TCP/IP协议建立连接,实现双向的文件传输。这种方式无需依赖额外的软件或服务,对于开发者来说,可以快速部署并使用,降低了系统集成的复杂性。 在"WinCE6.0_x86"文件夹中,包含了适用于x86架构的WinCE设备的程序,这些设备通常具有更强的计算能力,如某些工业级的平板电脑或者工控机。"WinCE6.0_ARM"文件夹则包含针对armv4i架构的程序,这类架构常见于移动设备和低功耗嵌入式系统。这两个版本的程序设计时考虑了硬件特性和性能优化,确保在不同架构的设备上都能流畅运行。 PC端的程序可能是一个简单的命令行工具,用户可以通过指定源文件和目标地址进行上传或下载操作。同时,为了提升用户体验,也有可能提供图形化界面,使得文件选择和传输状态监控更为直观。无论哪种形式,该工具都应具备断点续传、错误恢复等功能,以确保在网络不稳定的情况下也能完成文件传输。 在实际应用中,TransFile可能被用于更新WinCE设备的固件、同步数据、或者在开发调试过程中传递测试文件。由于其轻量级和高效的特点,它在很多需要频繁文件交互的场景下都有着显著的优势。 总结来说,"WinCE与PC间的文件网络传输工具_TransFile.zip" 是一个实用的跨平台文件传输解决方案,它简化了PC与WinCE设备之间的文件交互,支持多种硬件架构,并且可能提供便捷的操作界面。对于开发人员而言,这无疑是一个提高工作效率、降低开发难度的重要工具。在使用过程中,理解其工作原理和操作方式,将有助于更有效地利用这一资源,优化开发流程。
2024-09-20 16:34:15 1.24MB 文件网络传输 WinCE6.0
1
在IT领域,尤其是在多媒体通信和网络视频传输中,C# RTP 视频传输与解码是重要的技术之一。本文将详细解析标题和描述所提及的知识点,并深入探讨相关的技术细节。 RTP(Real-time Transport Protocol)是一种应用层协议,主要用于实时数据传输,如音频和视频。它设计的主要目标是确保数据的低延迟和有序传输,适用于VoIP、在线会议、流媒体服务等多种应用场景。RTP通常与RTCP(Real-time Control Protocol)配合使用,RTCP用于监控传输质量并提供反馈信息。 1. **H263编码**:H263是一种视频压缩标准,适用于低带宽环境,如3G移动网络。它优化了编码效率,能在有限的带宽下提供较好的视频质量。在C#项目中,实现H263解码器意味着能够处理这种编码格式的视频流,使它们能在不同的平台上播放。 2. **JPEG和MJPEG**:JPEG(Joint Photographic Experts Group)是一种广泛使用的图像文件格式,而MJPEG(Motion JPEG)是连续的JPEG帧组成的视频流。在视频传输中,MJPEG常用于简单的流媒体应用,因为它不需要复杂的编解码器,而是简单地发送连续的静态图像帧。 3. **RTSP(Real-Time Streaming Protocol)**:RTSP是一种应用层协议,用于控制媒体的传输。它可以用于启动、暂停、停止和播放流媒体服务器上的媒体资源。与RTP结合使用时,RTSP可以管理和控制媒体的实时传输。 4. **SDP(Session Description Protocol)**:SDP是定义多媒体会话的协议,它包含了会话的元数据,如媒体类型、编码方式、端口号、时间信息等。在RTP传输中,SDP用于描述媒体流的特性,帮助两端设备理解如何建立和解码接收的数据。 5. **项目结构**:根据压缩包中的文件名,我们可以推测项目可能包含以下几个部分: - `Codecs`:包含各种编码和解码算法的实现。 - `Http`:可能涉及HTTP协议支持,用于辅助媒体传输。 - `Media.sln`:这是Visual Studio的解决方案文件,包含了项目的配置和依赖。 - `Sdp`:处理SDP协议的代码。 - `Reference`:项目引用的外部库或框架。 - `Common`:公共函数和工具类。 - `nCodec`:可能是指特定的编解码器实现。 - `Compression`:可能涉及数据压缩的算法或工具。 - `RtpTools`:RTP相关的辅助工具和类。 - `Sockets`:网络套接字编程的相关代码,用于实现RTP/RTCP的基础网络连接。 在C#中实现这些功能,开发者通常会利用.NET Framework或.NET Core提供的网络和多媒体类库,例如System.Net.Sockets和System.IO.Compression。此外,为了提高性能和兼容性,可能还会引入第三方库,如FFmpeg,它提供了广泛的音视频编解码支持。 这个C#项目的目标是创建一个简洁易用的框架,让开发者能够轻松地处理RTP视频流,包括编码为H263、JPEG和MJPEG格式的视频,以及通过RTSP进行控制和SDP进行描述的媒体会话。这个项目对于那些需要构建实时视频通信应用的开发者来说是非常有价值的。
2024-09-11 10:30:52 43.86MB MEDIA H263 MJPEG JPEG
1
闲暇时折腾IP网络视频监控系统,需要支持视频帧数据包在网络内的传输。未采用H.264或MPEG4等编码压缩方式,直接使用Bitmap图片。由于对帧的准确到达要求不好,所以采用UDP传输。如果发生网络丢包现象则直接将帧丢弃。为了记录数据包的传输顺序和帧的时间戳,所以研究了下RFC3550协议,采用RTP包封装视频帧。并未全面深究,所以未使用SSRC和CSRC,因为不确切了解其用意。不过目前的实现情况已经足够了。 代码如下:///    /// RTP(RFC3550)协议数据包   ///    ///    /// The RTP hea
2024-09-11 10:26:27 91KB header padding payload
1
光纤传输直放站组网图 点对点传输方式(室内、室外)
2024-09-03 21:37:07 1.76MB ppt
1
在Android平台上,共享屏幕、远程控制以及数据传输是移动设备之间互动的重要功能,它们在协作、演示、游戏和教育等领域有着广泛的应用。Android系统通过多种技术实现这些功能,包括Wi-Fi Direct、Miracast、Chrome Remote Desktop等。下面将详细讨论这些知识点。 一、Android共享屏幕 1. Wi-Fi Direct:这是一种无线网络连接方式,允许设备之间直接建立高速、低延迟的连接,无需通过Wi-Fi热点或路由器。Wi-Fi Direct可用于设备间的屏幕共享,让一台Android设备的屏幕内容实时显示在另一台设备上。 2. Miracast:是Wi-Fi Alliance推出的一项标准,专门用于无线显示共享。Miracast支持设备间无损传输视频和音频,使得Android设备可以将屏幕内容投射到支持Miracast的电视或其他显示设备上。 3. Android Cast:这是Google为Android系统开发的一种屏幕镜像技术,用户可以通过“Google Home”或“Chrome”应用将手机或平板的屏幕内容投射到支持Chromecast的设备上,如智能电视。 二、远程控制 1. Chrome Remote Desktop:谷歌提供的跨平台远程桌面工具,用户可以在Android设备上远程控制PC或其他Android设备,进行文件访问、应用操作等。该功能基于Chrome浏览器,需在两端设备安装相应应用并设置。 2. 第三方应用:许多第三方应用如TeamViewer、AnyDesk也提供了Android设备的远程控制功能,这些应用通常具有更高的兼容性和自定义选项。 三、数据传输 1. ADB(Android Debug Bridge):开发者常用工具,可以通过USB或Wi-Fi在电脑与Android设备间传输文件,同时支持命令行远程调试。 2. NFC(Near Field Communication):近距离无线通信技术,两台设备触碰即可交换数据,如图片、联系人等。 3. Bluetooth:传统蓝牙用于设备间的数据传输,适用于较小文件,如音乐、图片等。 4. 文件管理器的分享功能:大多数Android设备自带或安装第三方文件管理器,支持通过Wi-Fi、蓝牙等方式分享文件。 5. Cloud同步:如Google Drive、Dropbox等云服务,可同步和分享文件,实现跨设备的数据传输。 总结起来,Android共享屏幕、远程控制及数据传输涉及的技术多样且灵活,开发者和用户可以根据具体需求选择适合的方式。Wi-Fi Direct、Miracast、Android Cast等技术提供了屏幕共享的可能性,而Chrome Remote Desktop等应用则实现了远程控制的需求。数据传输则有ADB、NFC、Bluetooth、文件管理器分享和云服务等多种途径。理解并掌握这些知识点,对于优化用户体验、提升工作效率具有重要意义。
2024-09-03 16:06:17 289.71MB android
1
UDP(User Datagram Protocol)是一种无连接的、不可靠的传输层协议,常用于实时数据传输,如音频、视频流媒体,以及在线游戏等对数据丢失容忍度较高的场景。C#作为.NET框架的一部分,提供了丰富的API来支持UDP通信。在本项目中,我们将探讨如何使用C#编写一个UDP传输程序,以便作为上位机与下位机或其他设备进行通信。 了解UDP的基础概念。UDP不保证数据包的顺序、可靠性和无重复,它只负责将数据包发送出去,不关心是否到达目的地或是否按序接收。因此,使用UDP时,应用程序需要自行处理这些问题。 在C#中,我们主要使用System.Net.Sockets命名空间中的UdpClient类来实现UDP通信。以下是创建和配置UdpClient的基本步骤: 1. 创建UdpClient实例:`UdpClient udpClient = new UdpClient();` 2. 设置端口号:`udpClient.Client.Bind(new IPEndPoint(IPAddress.Any, portNumber));`,这里的portNumber是服务器或客户端监听的端口。 3. 发送数据:`byte[] data = Encoding.UTF8.GetBytes(message);`,将字符串转换为字节,然后使用`udpClient.Send(data, data.Length, remoteEP);`发送到指定的远程端点(remoteEP)。 4. 接收数据:`IPEndPoint remoteEP = new IPEndPoint(IPAddress.Any, 0);`,定义一个接收端点,然后使用`byte[] receivedData = udpClient.Receive(ref remoteEP);`来接收数据,并获取发送方的IP和端口。 在课程设计中,你需要考虑以下几个关键点: 1. 数据包的序列化和反序列化:由于UDP不保证顺序,所以可能需要自己实现序列化和反序列化机制,确保数据在传输过程中的完整性。 2. 错误处理:需要考虑数据丢失、重复或乱序的情况,以及网络中断等问题。 3. 多线程或异步编程:为了提高性能,你可能会使用多线程或异步操作来同时处理发送和接收任务。 4. 安全性:虽然UDP本身不提供安全性,但你可以通过使用加密算法或者安全套接层(SSL/TLS)来增强通信的安全性。 在“介绍.txt”文件中,可能包含了关于项目背景、目的、设计思路和具体实现细节的详细说明。程序文件可能包含了一个或多个C#源代码文件,展示了如何实际应用上述概念来编写UDP通信程序。 掌握C#中的UDP通信技术,能帮助你构建实时、高效的应用,尤其是在对延迟敏感的场合。这个项目提供了实践这些技术的机会,通过它你可以深入理解网络编程的核心原理。
2024-09-02 11:44:33 65KB UDP
1