多序列比对是生物信息学中最重要和挑战性的任务之一. 针对多序列比对是NP 完全组合优化问题, 引.入Tent 混沌初始化种群策略、不同蜂种的邻域搜索策略和锦标赛选择策略等, 提出了一种基于多策略人工蜂群.的多序列比对算法. 该算法应用Tent混沌初始化种群策略以使初始个体多样化和获取较好初始解; 其次针对不同.蜂种的特性设计不同的邻域搜索策略以平衡算法的全局探索与局部开发能力. 同时引入序列比对的蜜源编码方.法以适应多序列比对的离散性. 实验结果表明, 该算法鲁棒性较强, 能获取较好的比对性能和生物特性
2023-11-24 08:52:47 365KB 人工蜂群算法;多策略;
1
【路径规划】基于人工蜂群算法求解多配送中心的车辆路径规划问题matlab源码.zip
2023-05-17 12:00:57 968KB
1
MATLAB编程-群智能优化算法应用-人工蜂群算法实现PID参数整定
2023-05-03 19:44:14 3KB MATLAB 人工蜂群 PID参数整定
【智能优化算法】基于人工蜂群算法求解多目标优化问题附matlab代码.zip
2023-04-12 10:39:40 718KB matlab
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真
2023-04-06 16:36:40 341KB matlab
1
针对人工蜂群算法在求解函数优化问题中存在收敛精度不高、收敛速度较慢的问题,提出了一种改进的增强寻优能力的自适应人工蜂群算法。该算法利用逻辑自映射函数产生混沌序列对雇佣蜂搜索行为进行混沌优化,并引入萤火虫算法中的自适应步长策略动态调整观察蜂的搜索行为,从而提升了算法的局部搜索能力。基于标准测试函数的仿真结果表明,改进后的人工蜂群算法在寻优精度和收敛速度上均有明显提高。
1
【路径规划】基于人工蜂群的路径规划matlab源码.md
2023-03-27 11:03:41 14KB 算法 源码
1
本文提出了一种新的优化算法,即分级人工蜂群优化算法,称为HABC,以解决射频识别网络规划(RNP)问题。 在提出的多层次模型中,较高层次的物种可以由较低层次的亚种群聚集。 在底层,每个采用规范ABC方法的子种群并行搜索零件尺寸最优值,可以将其构建为高层的完整解决方案。 同时,运用具有交叉和变异算子的综合学习方法来增强物种间的全局搜索能力。 针对一组10个基准优化问题进行了实验。 结果表明,与几种成功的群体智能算法和进化算法相比,拟议的HABC在大多数选定的基准函数上均具有出色的性能。 然后将HABC用于在两个不同规模的实例上解决现实世界中的RNP问题。 仿真结果表明,该算法在优化精度和计算鲁棒性方面优于RNP。
2023-03-02 16:40:05 2.75MB 研究论文
1
特征选择(特征子集选择)问题是各个领域中重要的预处理阶段之一。 在真实的数据集中,存在许多无用的不相关的、误导性的和冗余的特征。 主要特征可以通过特征选择技术来提取。 特征选择属于NP-hard问题; 因此,元启发式算法可用于解决该问题。 引入了一种新的二元 ABC,称为二元多邻域人工蜂群(BMNABC),以增强 ABC 阶段的探索和开发能力。 BMNABC 在第一和第二阶段应用具有新概率函数的近邻和远邻信息。 在第三阶段对那些在前几个阶段没有改进的解决方案进行了比标准 ABC 更有意识的搜索。 该算法可以与包装方法相结合以达到最佳效果。
2023-01-04 19:04:00 1.52MB matlab
1