ChatGPT 初识 解释为什么选择介绍ChatGPT ChatGPT 工作原理 语言模型和生成式对话系统的概念 ChatGPT 应用场景 ChatGPT在实际应用中的重要性 ChatGPT 优势挑战 在线客服和技术支持中的应用案例ChatGPT是一个由OpenAI开发的强大语言模型,基于GPT-3.5架构。它具备广泛的语言理解和生成能力,可以与人类进行自然而流畅的对话。ChatGPT可以处理各种问题,提供信息、解释概念、帮助解决问题,还能进行闲聊和娱乐。 【AI人工智能介绍】 人工智能(Artificial Intelligence, AI)是一门计算机科学的分支,致力于研究如何使计算机模拟人类智能的行为。这一领域涵盖了机器学习、深度学习、自然语言处理(NLP)、计算机视觉等多个子领域。AI的目标是创建能自主学习、理解和适应复杂环境的智能系统。 【ChatGPT初识】 ChatGPT是由OpenAI公司开发的一款强大语言模型,基于GPT-3.5架构。ChatGPT的设计目标是与用户进行自然、流畅的对话,其功能包括但不限于回答问题、提供解释、帮助解决问题以及参与闲聊。通过在海量的文本数据上进行训练,ChatGPT学会了理解和生成多种语言的能力,能够处理各种主题的问题。 【工作原理】 ChatGPT的工作原理依赖于语言模型和生成式对话系统。语言模型是通过对大量文本数据进行学习,理解语言的结构和模式。ChatGPT采用了自注意力机制的Transformer架构,这使得模型能捕捉输入序列的上下文信息,理解单词之间的相对位置,进而生成连贯的回应。在处理问题时,ChatGPT不仅根据问题本身,还会考虑之前的对话历史,以提供更符合情境的回答。 【应用场景】 ChatGPT的应用场景广泛,包括在线客服、技术支持、教育、创意写作等多个领域。在客服和技术支持中,ChatGPT可以快速提供信息,解答用户疑问,降低人工客服的压力。在教育领域,它可以帮助学生理解和解决学术问题。在创意写作方面,ChatGPT可以协助作者生成故事线、角色设定等,激发创作灵感。 【优势与挑战】 ChatGPT的优势在于其强大的语言理解和生成能力,能提供及时、准确的反馈。然而,也存在挑战,如可能产生的误导性信息、隐私问题以及对人类工作的潜在替代。在实际应用中,需要不断优化模型,提高其准确性和安全性,同时平衡技术进步与社会伦理的考量。 【微调与应用案例】 为了适应特定任务,ChatGPT可以进行微调,即在原始模型基础上,使用特定领域的数据进行进一步训练。微调过程包括数据准备、模型训练、超参数调整、评估与调优。通过这种方式,ChatGPT能够在特定领域,如医疗咨询、法律援助等,提供更为专业和针对性的服务。 AI和ChatGPT的发展正在深刻改变我们的生活方式,它们在各个领域的应用不断拓展,既提高了效率,也带来了新的挑战。作为一项前沿技术,ChatGPT将持续影响和推动人工智能的前进。
2024-10-15 10:11:10 42.22MB 人工智能 课程资源
1
horn子句归结(同济大学人工智能课程设计)_horn-resolution
2024-10-14 13:13:03 7KB
1
2017年5月23日至27日,中国围棋九段棋手柯洁在乌镇与AlphaGo对弈三场,三场全负,AlphaGo也成为历史上第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能机器人。AlphaGo是怎么成长起来的呢? 2022年8月8日,自动驾驶出行服务平台“萝卜快跑”的5辆自动驾驶车辆,正式在重庆市永川区开展车内无安全员的自动驾驶示范运营服务。截止目前,示范区已有L4级自动驾驶测试和示范运营车辆30辆,安全测试里程累计超过100万公里。自动驾驶的安全是如何得到保障的呢? 2022年12月,人工智能聊天机器人ChatGPT刷爆网络,网友们争先恐后去领略它的超高情商和巨大威力。它能够通过理解和学习人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文等任务。ChatGPT是如何炼成的呢?
2024-09-06 00:56:16 4.19MB 人工智能 课程资源
1
本资源配套对应的视频教程和图文教程,手把手教你使用YOLOV10做海上船只红外目标检测的训练、测试和界面封装,包含了YOLOV10原理的解析、处理好的训练集和测试集、训练和测试的代码以及训练好的模型,并封装为了图形化界面,只需点击上传按钮上传图像即可完成海上红外图像的预测。 在这里,我们用一个红外海洋目标检测的数据集,里面包含了7类海洋目标 `['liner', 'sailboat', 'warship', 'canoe', 'bulk carrier', 'container ship', 'fishing boat']` YOLOv10模型于24年5月份正式提出,对过去YOLOs的结构设计、优化目标和数据增强策略进行了深入的了解和探索,并对YOLO模型中的各个组件进行了rethink,从后处理和模型结构入手进行了新的设计,在速度和精度上进行提升。 博客地址为:https://blog.csdn.net/ECHOSON/article/details/139223999
2024-08-11 17:36:23 428.63MB 目标检测 人工智能 课程设计
1
好东西哦
2024-05-24 20:54:28 84KB 人工智能
1
从0到1搭建AI导航网站保姆级教程,给大家分享如何从0到1搭建AI导航网站教程 (WordPress主题)
2024-04-29 01:20:07 1.13MB 人工智能 课程资源 ai
1
AI人工智能课程大纲.xmind
2024-04-20 21:55:23 226KB
1
AI大模型是指具有巨大参数量的深度学习模型,通常包含数十亿甚至数万亿个参数。这些模型可以通过学习大量的数据来提高预测能力,从而在自然语言处理、计算机视觉、自主驾驶等领域取得重要突破。根据OpenAI的分类方法,可以将AI模型分为小型模型、中型模型、大型模型和极大型模型,其中大型模型和极大型模型可以被视为AI大模型。 AI大模型的发展历程非常丰富多样,目前已经涌现了许多具有重要影响力的大模型。然而,随着技术的不断进步和研究的推进,我们可以期待更多更强大的AI大模型的涌现。这些模型将继续通过更大的参数量和更深的网络结构来提升性能,同时也需要更强的计算资源、更优秀的算法优化方法以及更多的训练数据来支持。 AI大模型的出现带来了许多优点,例如更精确的预测能力、更好的泛化能力和更广泛的应用范围。然而,AI大模型也存在一些不足之处,比如需要更高的计算资源和训练时间,以及对数据的依赖性较强。此外,由于模型参数量过大,AI大模型也面临着可解释性不足、难以部署和隐私保护等问题
2023-12-15 15:21:22 267KB 人工智能 课程资源
1
人工智能课程
2023-12-11 22:37:11 23KB 人工智能 课程资源
1
人工智能课程的期末大作业,是基于 Python 语言完成的 SimPy 仿真项目及相应的文档和课程报告。项目旨在锻炼学生独立思考的能力,培养项目业务能力和创新思维。 文件说明 src 代码目录 LICENCE LGPL 3.0 开源许可证 tutor 自己编写的培训资料及教程文件,主要是向作业小组成员展示 Python 各个工具的使用方法 misc 杂项文件(找不到的资料都在这个文件夹里面) demo 老师给出的一组示例代码 backup 备份文件 LICENCE 项目开源许可证 requirements.txt Python 的项目依赖
2023-12-11 22:33:45 21.89MB 人工智能 课程资源 python
1