核主元分析KPCA,主要用于数据降维。核主成分分析(Kernel Principal Component Analysis, KPCA)方法是PCA方法的改进,从名字上也可以很容易看出,不同之处就在于“核”。使用核函数的目的:用以构造复杂的非线性分类器。
2024-09-10 11:35:14 209KB 特征降维
1
土壤含水量的高光谱反演是当今研究的热点。以土壤多样化的陕西省横山县为研究区, 通过野外采集土壤样品, 室内利用ASD Field Spec FR地物光谱仪测定土壤样品光谱, 采用称重法计算出土壤样品含水量, 并分析了不同含水量土壤样品的光谱特性。针对土壤含水量光谱反演中光谱反演因子的构建问题, 在研究一阶微分(FD)-主成分分析(PCA)、小波包变换(WPT)-FD-PCA反演输入因子生成方法及存在的不足的基础上, 提出了基于谐波分析(HA)的WPT-FD-HA-PCA的反演输入因子构建方法。以上述三种反演输入因子为基础, 建立了土壤含水量反演的FD-PCA-反向传播(BP)、WPT-FD-PCA-BP、WPT-FD-HA-PCA-BP三种BP反演模型。通过比较土壤含水量实测值与三种反演输入因子的反演结果, 得出WPT-FD-HA-PCA-BP模型的反演精度最高, 决定性系数R2达到0.9599, 均方根误差为1.667%, 其反演结果明显优于其他两种模型。这表明通过WPT和谐波分析能有效地抑制光谱噪声并压缩信号, 在一定程度上明显提高了土壤含水量反演精度。
2024-09-09 13:15:28 8.79MB 谐波分析 主成分分
1
对数据进行主成分分析PCA,将主成分进行RBF神经网络预测拟合,MATLAB源代码。
2024-06-28 16:28:44 1KB 主成分分析PCA MATLAB源代码
1
实验内容: 1)下载人脸识别数据库; 2)测试主成分分析PCA算法分类精度; 3)编写、运行程序并查看结果; 4)调节参数主成分分析PCA算法相关参数,分析其对模型效果的影响。
2024-05-10 21:28:06 750KB 机器学习
1
一、实验目的 1、复习主成分分析的原理和算法 2、使用sklearn库函数实现对鸢尾花数据集的主成分分析,观察主成分分析的作用 3、(选做)解读基于主成分分析和支持向量机的人脸识别程序 二、实验步骤 1、导入鸢尾花数据集,查看数据分布情况: 选取三个特征查看数据分布情况 选取两个特征查看数据分布情况 2、使用主成分分析函数对鸢尾花数据集降维 3、对降维后的数据集和原始数据集分别进行线性判别分析,比较分析的准确率 4、(选做)使用数值计算方法实现步骤2,深入了解主成分分析的实现过程 三、实验结果与讨论 1、简单清楚的叙述主成分分析的过程 2、绘制人脸识别程序的流程框图
2024-04-17 17:37:14 1.45MB python 数据集 主成分分析 人脸识别
1
pca主成分分析 PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf PCA:详细解释主成分分析.pdf
2024-03-04 19:53:51 404KB 人工智能
1
matlab的PCA主成分分析代码
2024-02-23 11:49:03 32KB matlab
1
主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型。 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型
2024-02-02 19:52:52 29KB 神经网络 matlab
1
棉花产量和纤维质量参数取决于作物生长的环境。 推荐作物基因型的主要挑战是基因型×环境相互作用。 鉴定具有高适应性和稳定性的品种是应对这一挑战的最佳方法之一。 研究了陆地棉基因型×环境互作。 十个基因型以三个重复重复的完全随机区组设计种植。 对收集到的数据以基因型和位置为因子进行方差分析(ANOVA)。 将变异的标准分析与主成分分析相结合的加性主效应和乘性相互作用模型用于研究基因型主效应,环境主效应和GE相互作用。 在皮棉产量,铃重,主食长度和种子等级模糊方面存在显着的基因型×环境相互作用。 在种子棉总产量上没有显着的品种×部位相互作用。 棉花品种对不同生长条件的反应不同,这意味着必须针对特定的生产条件正确选择种植者的品种,以避免因基因型×环境相互作用而造成的损失。
2024-01-14 20:24:45 653KB 通用电气 主成分分析
1
层次分析matlab代码PCA 使用Matlab进行空间主成分分析(SPCA 1.1):Tarik Benkaci&N. Dechemi(2020)注:该软件包使用Pearson的相关系数计算PCA,此外(SPCA 1.1)还通过三种方法对观测值进行聚类:KNN, K均值和层次聚类。 根据您的语言:法语或英语,如果要英语版本,请转到example_eng_2.m代码并运行:然后代码显示:数据的“变量的基本特征”:和pca的计算:相关矩阵(使用c.pearson )并计算特征向量和特征值。 在第二部分中:该代码显示pca的主要结果。 该软件包根据以下三种方法显示变量的聚类:KNN,K-means和分层聚类(HC)
2023-08-10 09:17:26 508KB 系统开源
1