智能电网技术是现代电力系统发展的核心方向之一,它涉及将先进的信息技术、通信技术、控制技术和电力技术融合到传统的电网中,以实现电网的智能化管理和运行。智能电网的目标是提升电网的可靠性、安全性、经济性和环境友好性,特别是在多种能源发电、调度以及高效利用方面发挥着越来越重要的作用。 1. 多种能源发电的多目标优化调度模型 在智能电网中,多种能源发电的多目标优化调度模型是核心内容。所谓多目标优化,指的是在考虑多个目标函数的同时,寻求这些目标之间的最优平衡。在电力系统中,这些目标可能包括但不限于最小化火电机组的煤耗、水电机组的用水量、电网的网损以及降低风电场的危险等级等。通过构建这种模型,可以全面评估发电资源的使用效率和系统的经济性,从而在保证电力供应可靠性的基础上,实现能源的高效利用和环境保护。 2. 仿水循环粒子群算法 为了有效解决多目标优化调度模型的复杂性和求解难度,本文提出了一种仿水循环粒子群算法。这是一种启发式算法,借鉴了自然界水循环机制,其目的是为了解决传统随机算法在面对复杂优化问题时耗时长和难以收敛到全局最优解的问题。仿水循环粒子群算法利用了水循环过程中的一些现象,如蒸发、降水、径流等,将这些现象转化为算法中的粒子运动规则,通过模仿水循环的方式迭代搜索最优解。 3. 风电机组出力的不确定模型 在智能电网的多种能源发电中,风能作为一种重要的可再生能源,其发电量受到风速随机性的影响,导致风电机组的出力具有不确定性。因此,本文采用了随机机会约束规划理论,建立了一个能够描述风速随机分布特性的风电机组出力不确定模型。该模型通过机会约束规划将不确定性转化为确定性等价形式,使得调度模型能够更加准确地反映实际情况。 4. 案例分析与验证 为验证所提出的多目标优化调度模型和仿水循环粒子群算法的实用性与有效性,研究以一个包含10个燃煤电厂、8个水电站和2个风电场的区域电力系统作为实例进行分析计算。通过计算结果,可以分析模型对电网的适应性,并评估仿水循环粒子群算法在求解多目标优化问题中的可行性与效率。 关键词解释: - 智能电网:指采用先进的信息通信技术与传统电网相结合,实现电网的智能化管理,包括发电、输电、变电、配电、用电和调度等环节。 - 多种能源发电:指在一个电力系统中同时或相继使用不同类型的发电方式,包括火电、水电、风电等。 - 多目标优化调度:是针对电力系统中的多个相互冲突的优化目标,同时进行优化以寻求各个目标之间的最佳平衡点。 - 仿水循环粒子群算法:一种基于自然水循环现象的新型优化算法,用于解决多目标优化问题。 本文介绍的智能电网多种能源发电多目标优化调度模型及其仿水循环粒子群算法,不仅在理论上构建了一个高效、节能、环保的电力调度模型,而且提出了一种高效的算法来解决实际问题,具有很高的实用价值和研究意义。随着智能电网技术的不断发展和优化算法的不断创新,这些研究成果将对提升智能电网的性能和推动可再生能源的利用起到积极的作用。
2024-09-21 13:01:54 533KB 首发论文
1
【标题】中的“matlabB样条轨迹规划,多目标优化,7次非均匀B样条轨迹规划”涉及的是机器人路径规划领域中的一个重要技术。在机器人运动控制中,轨迹规划是确保机器人按照预设的方式从起点到终点移动的关键步骤。B样条(B-Spline)是一种在数学和工程中广泛使用的曲线拟合方法,它允许我们生成平滑且可调整的曲线。在这里,提到的是7次非均匀B样条,意味着曲线由7次多项式控制,并且节点间距可以不均匀,这样可以更好地适应不同的路径需求。 “基于NSGAII遗传算法,实现时间 能量 冲击最优”指出该规划过程采用了多目标优化。NSGA-II(Non-dominated Sorting Genetic Algorithm II)是一种高效的多目标优化算法,它利用种群进化策略来同时优化多个相互冲突的目标函数。在这个案例中,目标是找到一条轨迹,使得它在时间消耗、能量消耗和冲击(通常与舒适度或机械损伤相关)方面达到最优平衡。 【描述】中提到,“换上自己的关节值和时间就能用”,意味着这个MATLAB代码提供了一个通用框架,用户只需输入自己机器人的关节角度序列和期望的规划时间,就可以自动生成符合优化条件的轨迹。代码中的“中文注释”对于初学者来说非常友好,有助于理解每个步骤的功能和意义。 结合【标签】“软件/插件”,我们可以推断这是一个可以应用于MATLAB环境的软件或工具,可能是一个MATLAB函数或者脚本,用户可以下载并直接在MATLAB环境中运行,进行机器人轨迹规划的仿真和优化。 【压缩包子文件的文件名称列表】包括一个HTML文件,可能包含了代码的详细解释或者使用说明;四张图片(1.jpg, 2.jpg, 3.jpg, 4.jpg, 5.jpg)可能展示了轨迹规划的示例或者算法流程图;以及一个名为“样条轨迹规划多目标优化.txt”的文本文件,很可能包含了源代码或规划结果的数据。 这个压缩包提供的资源是一个用MATLAB实现的7次非均匀B样条轨迹规划工具,采用NSGA-II遗传算法对时间、能量和冲击进行多目标优化。用户可以根据自己的关节数据和时间要求,利用这个工具生成最佳的机器人运动轨迹,而且代码有中文注释,便于理解和应用。对于机器人控制和多目标优化领域的学习者和研究者来说,这是一个非常实用的资源。
2024-08-30 15:18:15 426KB
1
**NSGA-II(非支配排序遗传算法第二代)**是一种广泛应用的多目标优化算法,它在处理具有多个相互冲突的目标函数的问题时表现出色。多目标优化问题与传统的单目标优化不同,因为它涉及到寻找一组最优解,称为帕累托最优解集,而不是单一的最佳解。 **算法原理**: 1. **初始化种群**:随机生成一定数量的个体,每个个体代表一个可能的解决方案。 2. **适应度评估**:计算每个个体的适应度值,这通常涉及计算每个目标函数的值。NSGA-II使用非支配排序来确定个体之间的优劣关系。 3. **非支配排序**:根据个体在所有目标函数上的表现进行排序,第一层非支配解是那些没有被其他解支配的解,第二层包括被第一层解支配但未被其他解支配的解,以此类推。 4. **拥挤距离计算**:在相同层的解之间,为了保持种群多样性,引入了拥挤距离指标,衡量个体在决策空间中的密度。 5. **选择操作**:使用基于非支配级别的选择策略,如“快速非支配排序选择”(Roulette Wheel Selection),保留更优秀的解,并考虑拥挤距离以保持多样性。 6. **交叉和变异操作**:进行遗传操作,如均匀交叉和位变异,生成新一代种群。 7. **迭代过程**:重复上述步骤,直到满足预设的终止条件(如达到最大迭代次数或达到特定的解质量)。 **NSGA-II的关键特性**: - **快速非支配排序**:高效地实现多目标优化问题的非支配排序,降低算法的时间复杂度。 - **拥挤距离**:通过考虑解的密度,防止优良解在进化过程中被挤出种群,确保解的多样性。 - **精英保留策略**:确保每一代的帕累托最优解都被保留在下一代中,避免优良解的丢失。 - **二进制编码和实数编码**:可以适用于二进制和实数编码的优化问题,增加了算法的适用性。 **应用领域**: NSGA-II广泛应用于工程设计、调度问题、投资组合优化、机器学习参数调优、生物医学工程、能源系统优化等多个领域。 **优化过程中的挑战与改进**: 尽管NSGA-II性能优秀,但在实际应用中,可能会遇到收敛速度慢、早熟收敛、种群多样性丧失等问题。因此,研究者们不断提出改进策略,如基于帕累托前沿的杂交策略、动态调整交叉和变异概率、采用自适应操作算子等,以提升算法的性能。 **总结**: NSGA-II作为多目标优化的代表性算法,通过非支配排序和拥挤距离保持种群多样性和收敛性,解决了多目标优化问题的复杂性。其核心思想和应用范围为解决实际问题提供了强大工具,同时也启发了后续的多目标优化算法研究和发展。
2024-08-19 15:41:30 16KB
1
知识辅助(KA)时空自适应处理(STAP)是一种吸引人的方案,用于提高在样本匮乏的异构环境中慢速移动目标的检测性能。 在本文中,我们解决了在KA约束下干扰协方差矩阵的最大似然估计问题。 为了降低内点法的复杂性,我们导出了干扰协方差矩阵的近似形式最大似然估计。 此外,对于在KA约束中仍然无法解决的开放问题的超参数选择,我们提出了一种基于似然函数和交叉验证的高效且全自动的方法。 我们发现,提出的估计器由白化样本协方差矩阵(SCM)的预白化步骤和特征值截断步骤组成,这与假定的杂波协方差(FMLACC)方法与现有的快速最大似然性有些相似。 但是,他们采用了不同的方法来截断增白的SCM的特征值。 数值模拟还表明,通过适当地选择超参数,所提出的估计可以显着优于在某些情况下FMLACC方法。
2024-07-17 09:17:31 472KB 研究论文
1
imu内参标定,allan方差分析,imu-utils
2024-06-29 15:54:11 196KB
1
该资源详细解读可关注博主免费专栏《论文与完整程序》21号博文 大量电动汽车投入运营,其充放电将对电力系统产生很大影响。针对电动汽车分层分区域控制模式,重点分析底层控制中心接收到上级调度指令后如何协调与控制本区域内电动汽车的充放电行为。考虑电动汽车充放电地点的分散性和时间的随机性,提出了一种区域内电动汽车充放电控制策略。通过仿真计算,得到了该控制方式下区域内电动汽车充放电对负荷曲线的影响。电动汽车充电负荷作为可调度负荷,可减小负荷高峰期的供电压力,提高负荷低谷时的机组利用率,提高电网的经济运行水平,其优化调度对电网意义重大。基于部分电动汽车用户实际中不接受电网调度的事实,以所有电动汽车用户的充电成本之和最小、电网负荷方差最小为目标,以用户充电需求等为约束,建立了电动汽车负荷的多目标优化调度模型。模型在保证用户充电获益的同时优化电网运行。采用改进粒子群算法求解模型,仿真结果表明,用户充电选择将影响充电调度方案、用户经济性和电网运行安全。在充电调度中,需要考虑用户的充电选择。
2024-05-17 13:54:38 581KB 毕业设计
079面向削峰填谷的电动汽车多目标优化调度策略.zip
2024-05-12 16:51:03 14.5MB
1
基于无线传感网络的气体泄漏源定位在环境监测、安全防护和污染控制等多个领域具有重要意义。提出一种基于分布式最小均方差(D-MMSE)序贯估计的气体泄漏源定位算法。其通过构建一个包含节点之间信息增益与网络能量消耗两方面参数的信息融合目标函数,并对目标函数寻优实现路由节点的调度与选择。所选节点在其测量值和前节点估计值并通过与邻居节点信息交互的基础上完成气体泄漏源位置参数估计量及其方差的更新与传递。为了降低网络能耗,邻居节点集的选择半径随估计量方差做动态调整。仿真分析表明所提算法对比单节点序贯估计定位算法在一定的
2024-05-06 13:02:20 1.27MB 工程技术 论文
1
多目标优化ZDT系列和DTLZ系列Pareto真实前言数据,包含ZDT1,ZDT2,ZDT3,ZDT4,ZDT5,ZDT6,DTLZ1~7
2024-04-25 15:50:57 592KB 多目标优化
1
数据源——数据可视化(七):Pandas香港酒店数据高级分析,涉及相关系数,协方差,数据离散化,透视表等精美可视化展示
2024-04-23 17:41:01 103KB pandas
1